Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 90 Papers

A Solanoeclepin A precursor functions as a new rhizosphere signaling molecule recruiting growth-promoting microbes under nitrogen deficiency

Authors: Abedini, D., Guerrieri, A., Jain, R., White, F., Koomen, J., Yang, Y., Wang, K., Kramer, G., Bouwmeester, H., Dong, L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.29.696744

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study shows that nitrogen deficiency markedly elevates the exudation of the triterpenoid Solanoeclepin A (SolA) from tomato roots, a process that requires non‑sterile soil and involves the rhizosphere microbiota. Transient silencing of two candidate biosynthetic genes (CYP749A19 and CYP749A20) reduced SolA levels and impaired recruitment of beneficial Massilia spp., which promote plant growth under nitrogen limitation, indicating that SolA acts as a microbe‑mediated recruitment signal that was co‑opted by cyst nematodes.

Solanoeclepin A nitrogen deficiency rhizosphere microbiome Massilia tomato

Alternative splicing of PIF4 regulates plant development under heat stress

Authors: Gonzalez, M. N., Alary, B., Szakonyi, D., Laloum, T., Duque, P., Martin, G.

Date: 2025-12-18 · Version: 1
DOI: 10.64898/2025.12.17.694898

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified a heat‑responsive exon‑skipping event in the basic Helix‑Loop‑Helix domain of the transcription factor PIF4, which reduces PIF4 activity and promotes photomorphogenic traits in etiolated seedlings. This reveals a novel post‑transcriptional mechanism by which plants modulate PIF4 function during heat stress.

PIF4 alternative splicing heat stress photomorphogenesis post‑transcriptional regulation

QTL for Heat-Induced Stomatal Anatomy Underpin Gas Exchange Variation in Field-Grown Wheat

Authors: Chaplin, E. D., Tanaka, E., Merchant, A., Sznajder, B., Trethowan, R., Salter, W. T.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694723

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study evaluated how stomatal anatomy and physiological efficiency influence wheat heat tolerance across multi‑environment field trials with 200 genotypes, using early versus delayed sowing to impose temperature stress. Findings revealed a decoupling between anatomical capacity (gsmax) and actual conductance (gs, gse) under heat, plastic shifts toward smaller, denser stomata, and identified 125 QTL linked to stomatal traits, suggesting targets for breeding climate‑resilient wheat.

stomatal conductance heat stress wheat (Triticum aestivum) QTL mapping stomatal anatomy

Quantitative trait locus mapping of root exudate metabolome in a Solanum lycopersicum Moneymaker x S. pimpinellifolium RIL population and their putative links to rhizosphere microbiome

Authors: Kim, B., Kramer, G., Leite, M. F. A., Snoek, B. L., Zancarini, A., Bouwmeester, H.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.17.693946

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study used untargeted metabolomics and QTL mapping in a tomato recombinant inbred line population to characterize root exudate composition and identify genetic loci controlling specific metabolites. It reveals domestication-driven changes in exudate profiles and links metabolic QTLs with previously reported microbial QTLs, suggesting a genetic basis for shaping the root microbiome.

root exudates untargeted metabolomics quantitative trait loci tomato plant‑microbe interactions

A Critical Window of Maternal Temperature Effects on Weedy Rice Seed Dormancy

Authors: Auge, G., Nishikata, R., Imaizumi, T.

Date: 2025-12-15 · Version: 1
DOI: 10.64898/2025.12.12.693925

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study identified a critical two‑week window of elevated maternal temperature during weeks 4–5 after flowering that delays dormancy release in weedy rice seeds. Controlled‑environment and field transplant experiments showed that this late‑reproductive‑stage heat exposure postpones germination after after‑ripening, providing insight for predicting seed behavior and improving weed management strategies.

seed dormancy maternal temperature weedy rice heat stress reproductive stage sensitivity

GWAs reveals SUBER GENE1-mediated suberization via Type One Phosphatases

Authors: Han, J.-P., Lefebvre-Legendre, L., Yu, J., Capitao, M. B., Beaulieu, C., Gully, K., Shukla, V., Wu, Y., Boland, A., Nawrath, C., Barberon, M.

Date: 2025-12-12 · Version: 2
DOI: 10.1101/2025.05.06.652434

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Using a forward genetic screen of 284 Arabidopsis thaliana accessions, the study identified extensive natural variation in root endodermal suberin and pinpointed the previously unknown gene SUBER GENE1 (SBG1) as a key regulator. GWAS and protein interaction analyses revealed that SBG1 controls suberin deposition by binding type‑one protein phosphatases (TOPPs), with disruption of this interaction or TOPP loss‑of‑function altering suberin levels, linking the pathway to ABA signaling.

suberin deposition Arabidopsis thaliana GWAS SBG1 TOPP phosphatases

The functional divergence of two ethylene receptor subfamilies that exhibit Ca2+-permeable channel activity

Authors: Pan, C., Cheng, J., Lin, Z., Hao, D., Xiao, Z., Ming, Y., Song, W., Liu, L., Guo, H.

Date: 2025-11-29 · Version: 1
DOI: 10.1101/2025.11.28.691086

Category: Plant Biology

Model Organism: General

AI Summary

The study demonstrates that subfamily I ethylene receptors form the core ethylene‑sensing module and act epistatically over subfamily II receptors, uniquely possessing Ca2+‑permeable channel activity that drives ethylene‑induced cytosolic calcium influx. This reveals a mechanistic link whereby subfamily I receptors integrate hormone perception with calcium signaling in plants.

ethylene signaling subfamily I receptors Ca2+ influx epistasis hormone‑induced calcium channel

DNA Methylation Dynamics Reveal Unique Plant Responses and Transcriptional Reprogramming to Combined Heat and Phosphate Deficiency Stress

Authors: Lozano-Enguita, A., Victoria Baca-Gonzalez, V., Morillas-Montaez, A., Pascual, J., Valledor, L., del Pozo, J. C., Caro, E.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.19.689328

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.

DNA methylation heat stress phosphate deficiency Arabidopsis thaliana whole-genome bisulfite sequencing

Heat stress induces unreduced male gamete formation by targeting meiocyte translation

Authors: Schindfessel, C., Cairo, A., Mikulkova, P., Jin, C., Lamelas Penas, L., Wigge, P. A., Riha, K., Geelen, D. N. V.

Date: 2025-11-13 · Version: 3
DOI: 10.1101/2022.08.11.503651

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that heat tolerance of meiotic division in Arabidopsis thaliana depends on sustained translation of cell‑cycle genes mediated by the protein TAM, which forms specialized condensates under high temperature. Natural variation was used to identify heat‑sensitive and heat‑tolerant TAM alleles, and boosting TAM translation with complementary peptides rescued heat‑induced meiotic defects, highlighting a potential mechanism driving polyploidisation under climate stress.

heat stress meiotic restitution TAM protein translation regulation polyploidisation

Thermotolerant pollen tube growth is controlled by RALF signaling.

Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.

Date: 2025-11-12 · Version: 2
DOI: 10.1101/2025.10.25.684177

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.

thermotolerant pollen tube growth heat stress RALF signaling pollen tube integrity tomato
Previous Page 2 of 9 Next