Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 91 Papers

Multi-Level Characterization Reveals Divergent Heat Response Strategies Across Wheat Genotypes of Different Ploidy

Authors: Arenas-M, A., Mino, I., Uauy, C., Calderini, D. F., Canales, J.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701169

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Field experiments combined with RNA sequencing revealed that wheat ploidy influences heat stress resilience, with tetraploid T. turgidum showing the smallest yield loss and hexaploid T. aestivum mounting the largest transcriptional response. Ploidy-dependent differences were observed in differential gene expression, alternative splicing—including hexaploid-specific exon skipping of NF‑YB—and co‑expression networks linked to grain traits, highlighting candidate pathways for breeding heat‑tolerant wheat.

heat stress wheat ploidy RNA sequencing differential gene expression alternative splicing

Decoding stage-specific symbiotic programs in the Rhizophagus irregularis-tomato interaction using single-nucleus transcriptomics

Authors: Stuer, N., Leroy, T., Eekhout, T., De Keyser, A., Staut, J., De Rybel, B., Vandepoele, K., Van Damme, P., Van Dingenen, J., Goormachtig, S.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701092

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study generated the first single‑nucleus RNA‑sequencing dataset of tomato (Solanum lycopersicum) roots colonized by the arbuscular mycorrhizal fungus Rhizophagus irregularis, revealing distinct transcriptional programs in epidermal and cortical cells across stages of arbuscule development. Using unsupervised subclustering and a Motif‑Informed Network Inference (MINI‑EX) approach, the authors identified candidate transcription factors that may coordinate cell‑cycle reactivation and nutrient integration during symbiosis, offering a resource for future functional genetics.

arbuscular mycorrhizal symbiosis single-nucleus RNA sequencing Solanum lycopersicum transcription factor network inference root cortical development

A Savory-based Formulation for Sustainable Management of Early Blight caused by Alternaria solani and Preservation of Tomato Fruit Quality

Authors: Lak, F., Omrani, A., Nikkhah, M. J., Gohari, A. M., Nicolaisen, M., Abuali, M., Ahmadzadeh, M.

Date: 2026-01-22 · Version: 1
DOI: 10.64898/2026.01.20.700539

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study assessed three savory essential oil–based formulations for controlling early blight caused by Alternaria solani in tomato, finding that formulation CC2020 most effectively reduced disease severity in both in vitro and greenhouse trials. CC2020 also helped maintain tomato fruit vitamin C levels and lowered fungal melanin production, indicating dual benefits for disease suppression and fruit quality.

early blight Solanum lycopersicum savory essential oil biocompatible formulation fruit quality

Initiation of asexual reproduction by the AP2/ERF gene GEMMIFER in Marchantia polymorpha

Authors: Takahashi, G., Yamaya, S., Romani, F., Bonter, I., Ishizaki, K., Shimamura, M., Kiyosue, T., Haseloff, J., Hirakawa, Y.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699827

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identifies the AP2/ERF transcription factor GEMMIFER (MpGMFR) as essential for asexual reproduction in the liverwort Marchantia polymorpha, showing that loss of MpGMFR via genome editing or amiRNA abolishes gemma and gemma cup formation, while dexamethasone‑induced activation triggers their development. Transient strong activation of MpGMFR initiates gemma initial cells at the meristem, which mature into functional gemmae, indicating MpGMFR is both necessary and sufficient for meristem‑derived asexual propagule formation.

MpGMFR AP2/ERF gemmae Marchantia polymorpha asexual reproduction

Physics-Informed Neural Network Methods for Predicting Plant Height Development

Authors: Shao, Y., van Eeuwijk, F., Peeters, C., Zumsteg, O., Athanasiadis, I., van Voorn, G.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699475

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.

Physics-Informed Neural Network logistic ODE Long Short-Term Memory plant height prediction wheat

Ultra large-scale 2D clinostats uncover environmentally derived variation in tomato responses to simulated microgravity

Authors: Hostetler, A. N., Kennebeck, E., Reneau, J. W., Birtell, E., Caldwell, D. L., Iyer-Pascuzzi, A. S., Sparks, E. E.

Date: 2026-01-13 · Version: 2
DOI: 10.1101/2025.05.16.654566

Category: Plant Biology

Model Organism: Solanum lycopersicum (tomato)

AI Summary

The study employed ultra large‑scale 2D clinostats to grow tomato (Solanum lycopersicum) plants beyond the seedling stage under simulated microgravity and upright control conditions across five sequential trials. Simulated microgravity consistently affected plant growth, but the magnitude and direction of the response varied among trials, with temperature identified as a significant co‑variant; moderate heat stress surprisingly enhanced growth under simulated microgravity. These results highlight the utility of large‑scale clinostats for dissecting interactions between environmental factors and simulated microgravity in plant development.

simulated microgravity ultra large-scale clinostat tomato (Solanum lycopersicum) heat stress plant growth interaction

The STA1-DOT2 interaction promotes nuclear speckle formation and splicing robustness in growth and heat stress responses

Authors: Kim, H., Yu, K.-j., Park, S. Y., Seo, D. H., Jeong, D.-H., Kim, W. T., Yun, D.-J., Lee, B.-h.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.11.698856

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the interaction between spliceosomal proteins STA1 and DOT2 controls nuclear speckle organization, pre‑mRNA splicing efficiency, and heat‑stress tolerance in Arabidopsis thaliana. A missense mutation in DOT2 restores the weakened STA1‑DOT2 interaction in the sta1‑1 mutant, linking interaction strength to speckle formation and transcriptome‑wide intron retention under heat stress, while pharmacological inhibition of STA1‑associated speckles reproduces the mutant phenotypes. These findings reveal a heat‑sensitive interaction node that couples spliceosome assembly to nuclear speckle dynamics and splicing robustness.

spliceosome nuclear speckles STA1‑DOT2 interaction heat stress Arabidopsis thaliana

MATERNAL AUTOPHAGY CONTRIBUTES TO GRAIN YIELD IN MAIZE

Authors: Tang, J., Avin-Wittenberg, T., Vollbrecht, E., Bassham, D.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697098

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study shows that maize plants carrying autophagy-defective atg10 mutations exhibit delayed flowering and significant reductions in kernel size, weight, and number, culminating in lower grain yield. Reciprocal crossing experiments reveal that the maternal genotype, rather than the seed genotype, primarily drives the observed kernel defects, suggesting impaired nutrient remobilization from maternal tissues during seed development.

autophagy atg10 mutant maize yield maternal effect nutrient remobilization

The interplay between autophagy and the carbon/nitrogen ratio as key modulator of the auxin-dependent chloronema-caulonema developmental transition in Physcomitrium patens.

Authors: Pettinari, G., Liberatore, F., Mary, V., Theumer, M., Lascano, R., Saavedra, L. L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.28.696759

Category: Plant Biology

Model Organism: Physcomitrium patens

AI Summary

Using the bryophyte Physcomitrium patens, the study shows that loss of autophagy enhances auxin‑driven caulonemata differentiation and colony expansion under low nitrogen or imbalanced carbon/nitrogen conditions, accompanied by higher internal IAA, reduced PpPINA expression, and up‑regulated RSL transcription factors. Autophagy appears to suppress auxin‑induced differentiation during nutrient stress, acting as a hub that balances metabolic cues with hormonal signaling.

autophagy auxin signaling carbon/nitrogen ratio Physcomitrium patens caulonemata development

Dynamic regulation of protein homeostasis underlies acquiredthermotolerance in Arabidopsis

Authors: Bajaj, M., Allu, A. D., Rao, B. J.

Date: 2025-12-26 · Version: 3
DOI: 10.1101/2023.08.04.552042

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Thermopriming enhances heat stress tolerance by orchestrating protein maintenance pathways: it activates the heat shock response (HSR) via HSFA1 and the unfolded protein response (UPR) while modulating autophagy to clear damaged proteins. Unprimed seedlings cannot mount these responses, leading to proteostasis collapse, protein aggregation, and death, highlighting the primacy of HSR and protein maintenance over clearance mechanisms.

thermopriming heat shock response unfolded protein response autophagy proteostasis
Page 1 of 10 Next