The study generated the first single‑nucleus RNA‑sequencing dataset of tomato (Solanum lycopersicum) roots colonized by the arbuscular mycorrhizal fungus Rhizophagus irregularis, revealing distinct transcriptional programs in epidermal and cortical cells across stages of arbuscule development. Using unsupervised subclustering and a Motif‑Informed Network Inference (MINI‑EX) approach, the authors identified candidate transcription factors that may coordinate cell‑cycle reactivation and nutrient integration during symbiosis, offering a resource for future functional genetics.
The study assessed three savory essential oil–based formulations for controlling early blight caused by Alternaria solani in tomato, finding that formulation CC2020 most effectively reduced disease severity in both in vitro and greenhouse trials. CC2020 also helped maintain tomato fruit vitamin C levels and lowered fungal melanin production, indicating dual benefits for disease suppression and fruit quality.
early blight Solanum lycopersicum savory essential oil biocompatible formulation fruit quality
Physics-Informed Neural Network Methods for Predicting Plant Height Development
Authors: Shao, Y., van Eeuwijk, F., Peeters, C., Zumsteg, O., Athanasiadis, I., van Voorn, G.
The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.
The study reveals that REMORIN protein evolution is primarily driven by diversification of their conserved C-terminal domain, defining four major clades. Structural bioinformatics predicts a common membrane‑binding interface with diverse curvatures and lengths, and suggests that some REMs can form C‑terminal‑mediated oligomers, adding complexity to membrane organization.
The study examined how DNA methylation influences cold stress priming in Arabidopsis thaliana, revealing that primed plants exhibit distinct gene expression and methylation patterns compared to non-primed plants. DNA methylation mutants, especially met1 lacking CG methylation, showed altered cold memory and misregulation of the CBF gene cluster, indicating that methylation ensures transcriptional precision during stress recall.
stress priming DNA methylation cold stress Arabidopsis thaliana transcriptome dynamics
Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens
Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.
The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.
tandem kinase proteins HMA domain disease resistance barley wheat
Targeting granule initiation and amyloplast structure to create giant starch granules in wheat
Authors: McNelly, R., Esch, L., Ngai, Q. Y., Pohan, K., Stringer, R., Fahy, B., Warren, F., Seung, D.
Mutations in the plastid division gene PARC6 and the granule initiation gene BGC1 were combined to generate wheat plants with dramatically enlarged A-type starch granules, some exceeding 50 µm, without affecting plant growth, grain size, or overall starch content. The parc6 bgc1 double mutant was evaluated in both glasshouse and field trials, and the giant granules displayed altered viscosity and pasting temperature, offering novel functional properties for food and industrial applications.
The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.
drought stress DNA methylation Triticum aestivum ROS1a demethylase transposable elements
Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions
Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.
The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.
wheat Fusarium head blight deoxynivalenol untargeted metabolomics diterpene conjugates
CHLOROPLAST GENOME AND PHYLOGENETIC ANALYSIS OF KATMON (Dillenia philippinensis Rolfe), A PHILIPPINE ENDEMIC FRUIT
Authors: Lucero, J. J. M., Munoz, J. A. M., Aglibot, L. Y., Cardona, D. E. M., Gueco, L. S., Manalang, A. P., Villanueva, J. C., Alonday, R. C. S.
The complete chloroplast genome of the endemic fruit species Dillenia philippinensis was sequenced, assembled, and annotated, revealing a 161,591‑bp quadripartite structure with 113 unique genes. Comparative analyses identified simple sequence repeats, codon usage patterns, and phylogenetic placement close to D. suffroticosa, providing a genomic resource for future breeding and conservation efforts.