Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.
The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.
KDM7-mediated oxygen sensing reprograms chromatin to enhance hypoxia tolerance in the root
Authors: Zhang, D., Chirinos, X., Del Chiaro, A., Shukla, V., Ryder, A., Beltran, A. D. P., Iacopino, S., Bota, P., Zivkovic, D., Fioriti, F., Telara, Y., Ellison, C. J., Costa, F., Elliott, P. R., Giorgi, F., Giuntoli, B., Flashman, E. G., Abreu, I., Licausi, F.
The study shows that Arabidopsis root tips adapt to hypoxia by increasing H3K4me3 levels, linked to the inhibition of group 7 demethylases (KDM7s). Genetic loss of KDM7s mimics hypoxic conditions, activating genes that sustain meristem survival, suggesting KDM7s act as root‑specific oxygen sensors that prime epigenetic tolerance mechanisms.
The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.
The study reveals that heat tolerance of meiotic division in Arabidopsis thaliana depends on sustained translation of cell‑cycle genes mediated by the protein TAM, which forms specialized condensates under high temperature. Natural variation was used to identify heat‑sensitive and heat‑tolerant TAM alleles, and boosting TAM translation with complementary peptides rescued heat‑induced meiotic defects, highlighting a potential mechanism driving polyploidisation under climate stress.
Thermotolerant pollen tube growth is controlled by RALF signaling.
Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.
The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.
Daily Heat Stress Induces Accumulation of Non-functional PSII-LHCII and Donor-side Limitation of PSI via Downregulation of the Cyt bf Complex in Arabidopsis thaliana
The study examined the impact of daily moderate heat stress (38 °C for 4 h) on Arabidopsis thaliana, revealing altered thylakoid ultrastructure and structurally intact but functionally impaired PSII‑LHCII complexes. A pronounced reduction in cytochrome b6f content limited PSI on the donor side, suggesting that Cyt b6f down‑regulation serves as an acclimation mechanism that protects PSI at the expense of overall photosynthetic efficiency.
KATANIN promotes cell elongation and division to generate proper cell numbers in maize organs
Authors: Martinez, S. E., Lau, K. H., Allsman, L. A., Irahola, C., Habib, C., Diaz, I. Y., Ceballos, I., Panteris, E., Bommert, P., Wright, A. J., Weil, C., Rasmussen, C.
The study identifies two maize genes, Discordia3a and Discordia3b, that encode the microtubule‑severing protein KATANIN. Loss‑of‑function allele combinations reduce microtubule severing, impair cell elongation, delay mitotic entry, and disrupt preprophase band and nuclear positioning, leading to dwarfed, misshapen plants.
The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.
The study used a computer‑vision phenotyping pipeline (EarVision.v2) based on Faster R-CNN to map Ds‑GFP mutant kernels on maize ears and a statistical framework (EarScape) to assess spatial patterns of allele transmission from the apex to the base. They found that alleles causing pollen‑specific transmission defects often show significant spatial biases, whereas Mendelian alleles do not, indicating that reduced pollen fitness can shape the spatial distribution of progeny genotypes in Zea mays.
The study reveals that the methyl‑CpG‑binding domain protein MBD8 interacts with the histone demethylase LDL2 to facilitate removal of H3K4me1 and transcriptional repression downstream of H3K9me2 in Arabidopsis. MBD8 binds GC‑poor DNA independently of cytosine methylation and stabilizes LDL2 protein levels, indicating a broader role for MBD proteins beyond methyl‑DNA recognition.