Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 86 Papers

The genetic architecture of leaf vein density traits and its importance for photosynthesis in maize

Authors: Coyac-Rodriguez, J. L., Perez-Limon, S., Hernandez-Jaimes, E., Hernandez-Coronado, M., Camo-Escobar, D., Alonso-Nieves, A. L., Ortega-Estrada, M. d. J., Gomez-Capetillo, N., Sawers, R. J., Ortiz-Ramirez, C. H.

Date: 2026-01-15 · Version: 1
DOI: 10.64898/2026.01.14.699362

Category: Plant Biology

Model Organism: Zea mays

AI Summary

Using diverse Mexican maize varieties and a MAGIC population, the study demonstrated that leaf vein density is both variable and plastic, correlating positively with photosynthetic rates for small intermediate veins and increasing under heat in drought-adapted lines. Twelve QTLs linked to vein patterning were identified, highlighting candidate genes for intermediate vein development and shedding light on the evolution of high-efficiency C4 leaf architecture.

leaf venation density C4 photosynthesis Zea mays QTL mapping MAGIC population

Root phenolics as potential drivers of preformed defenses and reduced disease susceptibility in a paradigm bread wheat mixture

Authors: Mathieu, L., Chloup, A., Marty, S., Savajols, J., Paysant-Le Roux, C., Launay-Avon, A., Martin, M.-L., Totozafy, J.-C., Perreau, F., Rochepeau, A., Rouveyrol, C., Petriacq, P., Morel, J.-B., Meteignier, L.-V., Ballini, E.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.13.699261

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.

root-mediated interactions bread wheat Septoria tritici blotch transcriptomics metabolomics

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

Investigating the apical notch, apical dominance and meristem regeneration in Marchantia polymorpha.

Authors: Marron, A. O.

Date: 2026-01-10 · Version: 5
DOI: 10.1101/2024.02.04.575544

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

Using laser ablation microscopy, the study dissected the role of the first cell row and a contiguous stem cell quorum in the apical notches of germinating Marchantia gemmae, revealing that these cells are essential for meristem activity and that apical notches communicate via auxin‑mediated signals to regulate dominance and regeneration. The findings support a model of intra‑, inter‑, and extra‑notch communication governing meristem formation and maintenance in Marchantia.

meristem maintenance apical dominance laser ablation microscopy auxin signaling Marchantia gemma

Southern South American Maize Landraces: A Source of Phenotypic Diversity

Authors: Dudzien, T. L., Freilij, D., Defacio, R. A., Fernandez, M., Paniego, N. B., Lia, V. V., Dominguez, P. G.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.02.697242

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study assessed 17 morphological, biochemical, and salt‑stress tolerance traits in 19 maize (Zea mays) landrace accessions from northern Argentina, revealing substantial variation both within and among accessions. Redundancy analysis linked phenotypic variation to the altitude of the collection sites, underscoring the potential of these landraces as sources of diverse biochemical and stress‑related traits for breeding.

Zea mays maize landraces phenotypic diversity biochemical traits salt stress tolerance

A chloroplast-localized protein AT4G33780 regulates Arabidopsis development and stress-associated responses

Authors: Yang, Z.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697459

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.

AT4G33780 chloroplast regulator Arabidopsis thaliana transcriptomics metabolomics

The interplay between autophagy and the carbon/nitrogen ratio as key modulator of the auxin-dependent chloronema-caulonema developmental transition in Physcomitrium patens.

Authors: Pettinari, G., Liberatore, F., Mary, V., Theumer, M., Lascano, R., Saavedra, L. L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.28.696759

Category: Plant Biology

Model Organism: Physcomitrium patens

AI Summary

Using the bryophyte Physcomitrium patens, the study shows that loss of autophagy enhances auxin‑driven caulonemata differentiation and colony expansion under low nitrogen or imbalanced carbon/nitrogen conditions, accompanied by higher internal IAA, reduced PpPINA expression, and up‑regulated RSL transcription factors. Autophagy appears to suppress auxin‑induced differentiation during nutrient stress, acting as a hub that balances metabolic cues with hormonal signaling.

autophagy auxin signaling carbon/nitrogen ratio Physcomitrium patens caulonemata development

Exogenous auxins for proline regulation in heat-stressed plants

Authors: Kaleh, A. M., Whalen, J. K.

Date: 2025-12-22 · Version: 1
DOI: 10.64898/2025.12.20.695708

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The abstract proposes that microbial indole-3-acetic acid (IAA) enhances plant thermotolerance by regulating proline metabolism, coordinating early osmoprotective synthesis with later catabolism to support growth and redox balance during heat stress. This regulation is hypothesized to involve integration of auxin perception (HSP90‑TIR1), MAPK signaling (MPK‑IAA8), mitochondrial redox components (SSR1, HSCA2) and interactions with abscisic acid and ethylene, offering a framework for using auxin‑producing microbes to boost heat resilience.

microbial indole-3-acetic acid thermomorphogenesis proline metabolism auxin signaling heat stress resilience

The influence of heavy metal stress on the evolutionary transition of teosinte to maize

Authors: Acosta Bayona, J. J., Vallebueno-Estrada, M., Vielle-Calzada, J.-P.

Date: 2025-12-22 · Version: 2
DOI: 10.1101/2025.03.17.643647

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study tests whether heavy‑metal stress contributed to maize domestication by exposing teosinte (Zea mays ssp. parviglumis) and the Palomero toluqueno landrace to sublethal copper and cadmium, then analysing genetic diversity, selection signatures, and transcriptomic responses of three chromosome‑5 heavy‑metal response genes (ZmHMA1, ZmHMA7, ZmSKUs5). Results reveal strong positive selection on these genes, heavy‑metal‑induced phenotypes resembling modern maize, and up‑regulation of Tb1, supporting a role for volcanic‑derived metal stress in early maize evolution.

heavy metal stress maize domestication Zea mays positive selection Tb1

Molecular response of the diatom Coscinodiscus granii and its co-occurring dictyochophyte during Lagenisma coscinodisci parasite infection

Authors: Orvain, C., Bertrand, L., Moussy, A., Porcel, B. M., Vallet, M., Carradec, Q., Thurotte, A.

Date: 2025-12-12 · Version: 2
DOI: 10.1101/2025.10.10.681168

Category: Plant Biology

Model Organism: Coscinodiscus granii

AI Summary

The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.

diatom‑parasite interactions oomycete effectors Coscinodiscus granii transcriptomics metabolomics
Page 1 of 9 Next