The circadian clock gates lateral root development
Authors: Nomoto, S., Mamerto, A., Ueno, S., Maeda, A. E., Kimura, S., Mase, K., Kato, A., Suzuki, T., Inagaki, S., Sakaoka, S., Nakamichi, N., Michael, T. P., Tsukagoshi, H.
The study identifies the circadian clock component ELF3 as a temporal gatekeeper that limits hormone‑induced pericycle proliferation and lateral root development in Arabidopsis thaliana. Time‑resolved transcriptomics, imaging, and genetic analyses show that ELF3 maintains rhythmic expression of key regulators via LNK1 and MADS‑box genes, and that loss of ELF3 disrupts this rhythm, enhancing callus growth and accelerating root organogenesis.
The genetic architecture of leaf vein density traits and its importance for photosynthesis in maize
Authors: Coyac-Rodriguez, J. L., Perez-Limon, S., Hernandez-Jaimes, E., Hernandez-Coronado, M., Camo-Escobar, D., Alonso-Nieves, A. L., Ortega-Estrada, M. d. J., Gomez-Capetillo, N., Sawers, R. J., Ortiz-Ramirez, C. H.
Using diverse Mexican maize varieties and a MAGIC population, the study demonstrated that leaf vein density is both variable and plastic, correlating positively with photosynthetic rates for small intermediate veins and increasing under heat in drought-adapted lines. Twelve QTLs linked to vein patterning were identified, highlighting candidate genes for intermediate vein development and shedding light on the evolution of high-efficiency C4 leaf architecture.
The study reveals that the microtubule-associated protein MAP70-2 integrates mechanical and biochemical signals to guide division plane orientation during early lateral root primordium formation in Arabidopsis thaliana. Dynamic MAP70-2 localization to cell corners and the cortical division zone precedes cytokinesis, and loss of MAP70-2 results in misoriented divisions and malformed lateral roots, highlighting its role in three‑dimensional differential growth under mechanical constraints.
The study assessed 17 morphological, biochemical, and salt‑stress tolerance traits in 19 maize (Zea mays) landrace accessions from northern Argentina, revealing substantial variation both within and among accessions. Redundancy analysis linked phenotypic variation to the altitude of the collection sites, underscoring the potential of these landraces as sources of diverse biochemical and stress‑related traits for breeding.
The study tests whether heavy‑metal stress contributed to maize domestication by exposing teosinte (Zea mays ssp. parviglumis) and the Palomero toluqueno landrace to sublethal copper and cadmium, then analysing genetic diversity, selection signatures, and transcriptomic responses of three chromosome‑5 heavy‑metal response genes (ZmHMA1, ZmHMA7, ZmSKUs5). Results reveal strong positive selection on these genes, heavy‑metal‑induced phenotypes resembling modern maize, and up‑regulation of Tb1, supporting a role for volcanic‑derived metal stress in early maize evolution.
Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.
The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.
KATANIN promotes cell elongation and division to generate proper cell numbers in maize organs
Authors: Martinez, S. E., Lau, K. H., Allsman, L. A., Irahola, C., Habib, C., Diaz, I. Y., Ceballos, I., Panteris, E., Bommert, P., Wright, A. J., Weil, C., Rasmussen, C.
The study identifies two maize genes, Discordia3a and Discordia3b, that encode the microtubule‑severing protein KATANIN. Loss‑of‑function allele combinations reduce microtubule severing, impair cell elongation, delay mitotic entry, and disrupt preprophase band and nuclear positioning, leading to dwarfed, misshapen plants.
The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.
The study used a computer‑vision phenotyping pipeline (EarVision.v2) based on Faster R-CNN to map Ds‑GFP mutant kernels on maize ears and a statistical framework (EarScape) to assess spatial patterns of allele transmission from the apex to the base. They found that alleles causing pollen‑specific transmission defects often show significant spatial biases, whereas Mendelian alleles do not, indicating that reduced pollen fitness can shape the spatial distribution of progeny genotypes in Zea mays.
The study investigates how the pleiotropic maize genes GRASSY TILLERS1 (GT1) and RAMOSA3 (RA3) are differentially regulated to suppress axillary meristems and floral organs, using a newly developed high-throughput quantitative phenotyping method for grass flowers. Distinct environmental mechanisms were found to control each suppression process, and upstream regulatory pathways of GT1 and RA3 have diverged, illustrating how ancient developmental genes can be redeployed to increase genetic pleiotropy during evolution.