Splicing regulation by RS2Z36 controls ovary patterning and fruit growth in tomato
Authors: Vraggalas, S., Rosenkranz, R. R., Keller, M., Perez-Perez, Y., Bachiri, S., Zehl, K., Bold, J., Simm, S., Ghatak, A., Weckwerth, W., Afjehi-Sadat, L., Chaturvedi, P., Testillano, P. S., Mueller-McNicoll, M., Zarnack, K., Fragkostefanakis, S.
The study identifies the serine/arginine-rich splicing factor RS2Z36 as a key regulator of ovary patterning and early fruit morphology in tomato, with loss‑of‑function mutants producing smaller, ellipsoid fruits and elongated pericarp cells. RNA‑seq and proteomic analyses reveal widespread alternative splicing and altered protein abundance, including novel splice‑variant peptides, while mutant pericarps show increased deposition of LM6‑detected arabinan and AGP epitopes.
Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.
The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.
The study functionally characterizes a conserved structured RNA motif (45ABC) in Arabidopsis RBP45 pre‑mRNAs, showing that its sequence and pairing elements mediate a negative auto‑ and cross‑regulatory feedback loop through alternative splicing that produces unproductive isoforms and reduces RBP45 expression. Transcriptome‑wide splicing analysis and phenotypic assessment of rbp45 mutants reveal that RBP45B plays a dominant role and that proper regulation of this motif is essential for root growth and flowering time.
Characterization of a dominant SmNac-like gene as a candidate for photosensitivity in the fruit peel of eggplant
Authors: Gomis-Cebolla, J., Manrique, S., Arrones, A., Toledo-Tolgar, M. D., Luna, J., Baraja-Fonseca, V., Sanchez-Pascual, J., Gimeno-Paez, E., Plazas, M., Gramazio, P., Vilanova, S., Prohens, J.
The study identified that fruit photosensitivity in eggplant is governed by a single dominant gene, with QTLs clustering at the distal end of chromosome 10 (84.1-87.9 Mb). Bulked segregant analysis sequencing and RNA‑seq highlighted the SmNAC1‑like transcription factor as a likely regulator of anthocyanin accumulation, though no coding sequence mutations were detected, suggesting regulatory control at another level.
A large-scale proteomic study in Arabidopsis thaliana identified over 32,000 isoform-specific peptides, confirming that alternative splicing, particularly intron retention, produces translated protein isoforms. Integrated proteogenomic analysis, SUPPA classification, and AlphaFold modeling revealed structural impacts and a non-linear regulation of transcript and protein abundance, with mutant phenotypes linking splicing to growth, chlorophyll content, and anthocyanin accumulation.
KATANIN promotes cell elongation and division to generate proper cell numbers in maize organs
Authors: Martinez, S. E., Lau, K. H., Allsman, L. A., Irahola, C., Habib, C., Diaz, I. Y., Ceballos, I., Panteris, E., Bommert, P., Wright, A. J., Weil, C., Rasmussen, C.
The study identifies two maize genes, Discordia3a and Discordia3b, that encode the microtubule‑severing protein KATANIN. Loss‑of‑function allele combinations reduce microtubule severing, impair cell elongation, delay mitotic entry, and disrupt preprophase band and nuclear positioning, leading to dwarfed, misshapen plants.
Novel substrate affinity of FaCCR1 and FaCCR1/FaOCT4 expression control the content of medium-chain esters in strawberry fruit
Authors: Roldan-Guerra, F. J., Amorim-Silva, V., Jimenez, J., Mari-Albert, A., Torreblanca, R., Ruiz del Rio, J., Botella, M. A., Granell, A., Sanchez-Sevilla, J. F., Castillejo, C., Amaya, I.
The study identified a major QTL on chromosome 6A that accounts for 40% of variation in medium-chain ester (MCE) levels in strawberry fruit, pinpointing FaCCR1 and FaOCT4 as the causal genes. Functional validation through subcellular localization, transient overexpression, enzymatic assays, and molecular docking demonstrated that FaCCR1 also catalyzes MCE precursor reactions, and a KASP marker in FaOCT4 was developed for breeding fragrant cultivars.
The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.
The study used a computer‑vision phenotyping pipeline (EarVision.v2) based on Faster R-CNN to map Ds‑GFP mutant kernels on maize ears and a statistical framework (EarScape) to assess spatial patterns of allele transmission from the apex to the base. They found that alleles causing pollen‑specific transmission defects often show significant spatial biases, whereas Mendelian alleles do not, indicating that reduced pollen fitness can shape the spatial distribution of progeny genotypes in Zea mays.
The study identified seven adult plant resistance QTL for oat crown rust using two recombinant inbred line populations, with a major QTL (QPc_GS7_4A.2) on chromosome 4A closely linked to the Pc61 resistance gene. KASP markers targeting SNPs tightly linked to the four most significant QTL were developed, and genetic and haplotype analyses confirmed the association of QPc_GS7_4A.2 with both seedling and adult plant resistance, providing valuable tools for oat breeding.