Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes
Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.
The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.
The genetic architecture of leaf vein density traits and its importance for photosynthesis in maize
Authors: Coyac-Rodriguez, J. L., Perez-Limon, S., Hernandez-Jaimes, E., Hernandez-Coronado, M., Camo-Escobar, D., Alonso-Nieves, A. L., Ortega-Estrada, M. d. J., Gomez-Capetillo, N., Sawers, R. J., Ortiz-Ramirez, C. H.
Using diverse Mexican maize varieties and a MAGIC population, the study demonstrated that leaf vein density is both variable and plastic, correlating positively with photosynthetic rates for small intermediate veins and increasing under heat in drought-adapted lines. Twelve QTLs linked to vein patterning were identified, highlighting candidate genes for intermediate vein development and shedding light on the evolution of high-efficiency C4 leaf architecture.
The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.
The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.
A novel pathosystem between Aeschynomene evenia and Aphanomyces euteiches reveals new immune components in quantitative legume root-rot resistance.
Authors: Baker, M., Martinez, Y., Keller, J., Sarrette, B., Pervent, M., Libourel, C., Le Ru, A., Bonhomme, M., Gough, C., Castel, B., ARRIGHI, J.-F., Jacquet, C.
The study establishes Aeschynomene evenia as a new model for dissecting legume immunity against the soilborne pathogen Aphanomyces euteiches and its relationship with Nod factor-independent symbiosis. Quantitative resistance was assessed through inoculation assays, phenotypic and cytological analyses, and RNA‑seq identified thousands of differentially expressed genes, highlighting immune signaling and specialized metabolism, with mutant analysis confirming dual‑function kinases that modulate resistance. Comparative transcriptomics with Medicago truncatula revealed conserved and unique immune responses, positioning the A. evenia–A. euteiches system as a valuable platform for exploring quantitative resistance and symbiosis integration.
The study assessed 17 morphological, biochemical, and salt‑stress tolerance traits in 19 maize (Zea mays) landrace accessions from northern Argentina, revealing substantial variation both within and among accessions. Redundancy analysis linked phenotypic variation to the altitude of the collection sites, underscoring the potential of these landraces as sources of diverse biochemical and stress‑related traits for breeding.
The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.
Root-Suppressed Phenotype of Tomato Rs Mutant is Seemingly Related to Expression of Root-Meristem-Specific Sulfotransferases
Authors: Kumari, A., Gupta, P., Santisree, P., Pamei, I., Valluri,, S., Sharma, K., Venkateswara Rao, K., Shukla, S., Nama, S., Sreelakshmi, Y., Sharma, R.
The study characterizes a radiation‑induced root‑suppressed (Rs) mutant in tomato that displays dwarfism and pleiotropic defects in leaves, flowers, and fruits. Metabolite profiling and rescue with H2S donors implicate disrupted sulfur metabolism, and whole‑genome sequencing identifies promoter mutations in two root‑meristem‑specific sulfotransferase genes as likely contributors to the root phenotype.
An ancient alkalinization factor informs Arabidopsis root development
Authors: Xhelilaj, K., von Arx, M., Biermann, D., Parvanov, A., Faiss, N., Monte, I., Klingelhuber, F., Zipfel, C., Timmermans, M., Oecking, C., Gronnier, J.
The study identifies members of the REMORIN protein family as inhibitors of plasma membrane H⁺‑ATPases, leading to extracellular pH alkalinization that modulates cell surface processes such as steroid hormone signaling and coordinates root developmental transitions in Arabidopsis thaliana. This inhibition represents an ancient mechanism predating root evolution, suggesting that extracellular pH patterning has shaped plant morphogenesis.
The study examined how dual‑purpose hemp (Cannabis sativa) adjusts to different phosphate levels, showing that flower biomass is maintained unless phosphate is completely removed. Integrated physiological measurements and transcriptomic profiling revealed that phosphate is reallocated to flowers via glycolytic bypasses and organic phosphate release, while key regulatory genes followed expected patterns but did not suppress uptake at high phosphate, leading to nitrate depletion that limits growth.