Characterization of a dominant SmNac-like gene as a candidate for photosensitivity in the fruit peel of eggplant
Authors: Gomis-Cebolla, J., Manrique, S., Arrones, A., Toledo-Tolgar, M. D., Luna, J., Baraja-Fonseca, V., Sanchez-Pascual, J., Gimeno-Paez, E., Plazas, M., Gramazio, P., Vilanova, S., Prohens, J.
The study identified that fruit photosensitivity in eggplant is governed by a single dominant gene, with QTLs clustering at the distal end of chromosome 10 (84.1-87.9 Mb). Bulked segregant analysis sequencing and RNA‑seq highlighted the SmNAC1‑like transcription factor as a likely regulator of anthocyanin accumulation, though no coding sequence mutations were detected, suggesting regulatory control at another level.
The study investigates the wheat Pm3 NLR allelic series, revealing that near-identical Pm3d and Pm3e alleles confer broad-spectrum resistance by recognizing multiple, structurally diverse powdery mildew effectors. Using chimeric NLR constructs, the authors pinpoint specificity-determining polymorphisms and demonstrate that engineered combinations of Pm3d and Pm3e further expand effector recognition, showcasing the potential for durable wheat protection through NLR engineering.
KATANIN promotes cell elongation and division to generate proper cell numbers in maize organs
Authors: Martinez, S. E., Lau, K. H., Allsman, L. A., Irahola, C., Habib, C., Diaz, I. Y., Ceballos, I., Panteris, E., Bommert, P., Wright, A. J., Weil, C., Rasmussen, C.
The study identifies two maize genes, Discordia3a and Discordia3b, that encode the microtubule‑severing protein KATANIN. Loss‑of‑function allele combinations reduce microtubule severing, impair cell elongation, delay mitotic entry, and disrupt preprophase band and nuclear positioning, leading to dwarfed, misshapen plants.
Novel substrate affinity of FaCCR1 and FaCCR1/FaOCT4 expression control the content of medium-chain esters in strawberry fruit
Authors: Roldan-Guerra, F. J., Amorim-Silva, V., Jimenez, J., Mari-Albert, A., Torreblanca, R., Ruiz del Rio, J., Botella, M. A., Granell, A., Sanchez-Sevilla, J. F., Castillejo, C., Amaya, I.
The study identified a major QTL on chromosome 6A that accounts for 40% of variation in medium-chain ester (MCE) levels in strawberry fruit, pinpointing FaCCR1 and FaOCT4 as the causal genes. Functional validation through subcellular localization, transient overexpression, enzymatic assays, and molecular docking demonstrated that FaCCR1 also catalyzes MCE precursor reactions, and a KASP marker in FaOCT4 was developed for breeding fragrant cultivars.
The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.
The study used a computer‑vision phenotyping pipeline (EarVision.v2) based on Faster R-CNN to map Ds‑GFP mutant kernels on maize ears and a statistical framework (EarScape) to assess spatial patterns of allele transmission from the apex to the base. They found that alleles causing pollen‑specific transmission defects often show significant spatial biases, whereas Mendelian alleles do not, indicating that reduced pollen fitness can shape the spatial distribution of progeny genotypes in Zea mays.
Regenerative agriculture effects on biomass, drought resilience and 14C-photosynthate allocation in wheat drilled into ley compared to disc or ploughed arable soil
Authors: Austen, N., Short, E., Tille, S., Johnson, I., Summers, R., Cameron, D. D., Leake, J. R.
Regenerative agriculture using a grass-clover ley increased wheat yields and macroaggregate stability despite reduced root biomass, but did not enhance soil carbon sequestration as measured by 14C retention. Drought further decreased photosynthate allocation to roots, especially in ley soils, while genotype effects on yield were minimal.
The study identified seven adult plant resistance QTL for oat crown rust using two recombinant inbred line populations, with a major QTL (QPc_GS7_4A.2) on chromosome 4A closely linked to the Pc61 resistance gene. KASP markers targeting SNPs tightly linked to the four most significant QTL were developed, and genetic and haplotype analyses confirmed the association of QPc_GS7_4A.2 with both seedling and adult plant resistance, providing valuable tools for oat breeding.
The study investigates how the pleiotropic maize genes GRASSY TILLERS1 (GT1) and RAMOSA3 (RA3) are differentially regulated to suppress axillary meristems and floral organs, using a newly developed high-throughput quantitative phenotyping method for grass flowers. Distinct environmental mechanisms were found to control each suppression process, and upstream regulatory pathways of GT1 and RA3 have diverged, illustrating how ancient developmental genes can be redeployed to increase genetic pleiotropy during evolution.
Non-catalytic and catalytic TREHALOSE-6-PHOSPHATE SYNTHASES interact with RAMOSA3 to control maize development.
Authors: Tran, T., Claeys, H., Abraham Juarez, M. J., Vi, L. S., Xu, X., Michalski, K., Chou, T. H., Iohannes, S. D., Boumpas, P., Williams, Z., Sheppard, S., Griffiths, C., Paul, M., Furukawa, H., Jackson, D.
The study reveals that the maize catalytic trehalose-6-phosphate phosphatase RA3 interacts with the non‑catalytic TPS ZmTPS1, and together with the catalytic TPS ZmTPS14 they form a protein complex that enhances enzymatic activity. Genetic analyses show that mutations in ZmTPS1 and its paralog ZmTPS12 exacerbate ra3 branching phenotypes, while loss of the catalytic TPSs ZmTPS11 and ZmTPS14 causes embryonic lethality, indicating essential and regulatory roles for both catalytic and non‑catalytic TPS/TPP proteins in plant development.