Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 27 Papers

The genetic architecture of leaf vein density traits and its importance for photosynthesis in maize

Authors: Coyac-Rodriguez, J. L., Perez-Limon, S., Hernandez-Jaimes, E., Hernandez-Coronado, M., Camo-Escobar, D., Alonso-Nieves, A. L., Ortega-Estrada, M. d. J., Gomez-Capetillo, N., Sawers, R. J., Ortiz-Ramirez, C. H.

Date: 2026-01-15 · Version: 1
DOI: 10.64898/2026.01.14.699362

Category: Plant Biology

Model Organism: Zea mays

AI Summary

Using diverse Mexican maize varieties and a MAGIC population, the study demonstrated that leaf vein density is both variable and plastic, correlating positively with photosynthetic rates for small intermediate veins and increasing under heat in drought-adapted lines. Twelve QTLs linked to vein patterning were identified, highlighting candidate genes for intermediate vein development and shedding light on the evolution of high-efficiency C4 leaf architecture.

leaf venation density C4 photosynthesis Zea mays QTL mapping MAGIC population

Southern South American Maize Landraces: A Source of Phenotypic Diversity

Authors: Dudzien, T. L., Freilij, D., Defacio, R. A., Fernandez, M., Paniego, N. B., Lia, V. V., Dominguez, P. G.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.02.697242

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study assessed 17 morphological, biochemical, and salt‑stress tolerance traits in 19 maize (Zea mays) landrace accessions from northern Argentina, revealing substantial variation both within and among accessions. Redundancy analysis linked phenotypic variation to the altitude of the collection sites, underscoring the potential of these landraces as sources of diverse biochemical and stress‑related traits for breeding.

Zea mays maize landraces phenotypic diversity biochemical traits salt stress tolerance

The influence of heavy metal stress on the evolutionary transition of teosinte to maize

Authors: Acosta Bayona, J. J., Vallebueno-Estrada, M., Vielle-Calzada, J.-P.

Date: 2025-12-22 · Version: 2
DOI: 10.1101/2025.03.17.643647

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study tests whether heavy‑metal stress contributed to maize domestication by exposing teosinte (Zea mays ssp. parviglumis) and the Palomero toluqueno landrace to sublethal copper and cadmium, then analysing genetic diversity, selection signatures, and transcriptomic responses of three chromosome‑5 heavy‑metal response genes (ZmHMA1, ZmHMA7, ZmSKUs5). Results reveal strong positive selection on these genes, heavy‑metal‑induced phenotypes resembling modern maize, and up‑regulation of Tb1, supporting a role for volcanic‑derived metal stress in early maize evolution.

heavy metal stress maize domestication Zea mays positive selection Tb1

Ethylene signal-driven plant-multitrophic synergy boosts crop performance

Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.

Date: 2025-11-29 · Version: 1
DOI: 10.1101/2025.11.28.690471

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.

arbuscular mycorrhizal fungi lateral root development ethylene‑responsive transcription factors flavonoid metabolism Zea mays

KATANIN promotes cell elongation and division to generate proper cell numbers in maize organs

Authors: Martinez, S. E., Lau, K. H., Allsman, L. A., Irahola, C., Habib, C., Diaz, I. Y., Ceballos, I., Panteris, E., Bommert, P., Wright, A. J., Weil, C., Rasmussen, C.

Date: 2025-10-06 · Version: 1
DOI: 10.1101/2025.10.05.680529

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study identifies two maize genes, Discordia3a and Discordia3b, that encode the microtubule‑severing protein KATANIN. Loss‑of‑function allele combinations reduce microtubule severing, impair cell elongation, delay mitotic entry, and disrupt preprophase band and nuclear positioning, leading to dwarfed, misshapen plants.

KATANIN microtubule severing Zea mays preprophase band cell elongation

Aphid-derived cross-kingdom RNA dynamics underpin maize resistance

Authors: Jiang, S., Zhang, Z., Liu, C., Zhu, Y., Kou, Y., Yang, P., Hu, Z., Wu, J., Wang, Y., Wan, F., Wu, G., Chen, Y.

Date: 2025-09-28 · Version: 1
DOI: 10.1101/2025.09.25.678037

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.

aphid long non‑coding RNA cross‑kingdom effectors Zea mays RNA interference

Genome-wide Identification, Structural Features and Single-Cell Expression Atlas of the Carbonic Anhydrase Gene Family in Maize (Zea mays L.)

Authors: Gao, Y., Zhao, C.

Date: 2025-09-21 · Version: 1
DOI: 10.1101/2025.09.21.677582

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study delivers a genome‑wide census and single‑cell‑resolved expression atlas of carbonic anhydrase (CA) genes in maize, identifying 18 CA members across α, β, and γ subfamilies, characterizing their phylogeny, promoter motifs, and tissue‑specific expression. β‑CAs are shown to be chloroplast‑centered hubs in mesophyll cells supporting C4 photosynthesis, while γ‑CAs contribute to ion/pH buffering, and cell‑type‑specific CA genes are proposed as targets for enhancing stress resilience in maize.

carbonic anhydrase Zea mays single‑cell expression atlas C4 photosynthesis stress resilience

Spatial inheritance patterns across maize ears are associated with alleles that reduce pollen fitness

Authors: Ruggiero, D., Bang, M., Leary, M., Flieg, H., Garcia-Lamas, L., Vejlupkova, Z., Megraw, M., Jiang, D., Leiboff, S., Fowler, J. E.

Date: 2025-09-20 · Version: 1
DOI: 10.1101/2025.09.17.676879

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study used a computer‑vision platform (EarVision.v2) and statistical pipeline (EarScape) to map Ds‑GFP kernel phenotypes on maize ears and assess how pollen‑fitness mutants affect progeny genotype distribution along the ear. While alleles with Mendelian inheritance showed no spatial bias, half of the pollen‑specific transmission‑defective alleles displayed significant spatial patterns, indicating that reduced pollen fitness can alter genotype distribution beyond simple pollen tube growth differences.

pollen fitness spatial genotype distribution Zea mays computer vision phenotyping transmission ratio distortion

Cross-species optimization of nuclei isolation in plants

Authors: Luo, Y., Yan, J., La, T., Yan, J., Romay, C.

Date: 2025-09-04 · Version: 1
DOI: 10.1101/2025.09.04.674249

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The authors present a reproducible Percoll-based nuclei isolation workflow suitable for single-nucleus RNA sequencing across multiple plant tissues and species. In Zea mays, the method consistently yields high‑integrity nuclei (>50,000 per sample) from root, stem, leaf, and embryo, and gradient conditions can be adjusted for other species to obtain 20,000‑50,000 nuclei with clean suspensions. Validation with 10x Genomics snRNA‑seq confirms the protocol’s robustness and versatility.

single-nucleus RNA sequencing Percoll gradient isolation nuclei integrity Zea mays cross-species applicability

Non-catalytic and catalytic TREHALOSE-6-PHOSPHATE SYNTHASES interact with RAMOSA3 to control maize development.

Authors: Tran, T., Claeys, H., Abraham Juarez, M. J., Vi, L. S., Xu, X., Michalski, K., Chou, T. H., Iohannes, S. D., Boumpas, P., Williams, Z., Sheppard, S., Griffiths, C., Paul, M., Furukawa, H., Jackson, D.

Date: 2025-08-12 · Version: 1
DOI: 10.1101/2025.08.09.669499

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study reveals that the catalytic trehalose‑6‑phosphate phosphatase RA3 interacts with non‑catalytic ZmTPS1 and catalytic ZmTPS14 to form a protein complex that enhances enzymatic activity, influencing inflorescence branching in maize. Loss‑of‑function mutants of ZmTPS1, ZmTPS12, and the essential ZmTPS11/ZmTPS14 pair demonstrate the developmental importance of these interactions.

Trehalose-6-phosphate TPP TPS Zea mays inflorescence branching
Page 1 of 3 Next