The study investigates autophagy’s protective role against cadmium stress in Arabidopsis thaliana by comparing wild-type, atg5 and atg7 autophagy-deficient mutants, and ATG5/ATG7 overexpression lines. Cadmium exposure triggered autophagy, shown by ATG8a-PE accumulation, GFP-ATG8a fluorescence and ATG gene up-regulation, with atg5 mutants displaying heightened Cd sensitivity and disrupted metal ion homeostasis, whereas overexpression had limited impact. Genotype-specific differences between Col-0 and Ws backgrounds were also observed.
The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.
A dual component system instructs membrane hydrolysis during the final stages of plant autophagy
Authors: Castets, J., Buridan, M., Toboso Moreno, I., Sanchez de Medina Hernandez, V., Gomez, R. E., Dittrich-Domergue, F., Lupette, J., Chambaud, C., Pascal, S., Ibrahim, T., Bozkurt, T. O., Dagdas, Y., Domergue, F., Joubes, J., Minina, A. E. A., Bernard, A.
The study identifies the Arabidopsis phospholipases LCAT3 and LCAT4 as essential components that hydrolyze membranes of autophagic bodies within the vacuole, a critical step for autophagy completion. Double mutants lacking both enzymes accumulate autophagic bodies and display diminished autophagic activity, while in vivo reconstitution shows LCAT3 initiates membrane hydrolysis, facilitating LCAT4’s function.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
ATG8i Autophagy activation is mediated by cytosolic Ca2+ under osmotic stress in Arabidopsis thaliana
Authors: Castillo-Olamendi, L., Gutierrez-Martinez, J., Jimenez-Nopala, G., Galindo, A., Barrera-Ortiz, S., Rosas-Santiago, P., Cordoba, E., Leon, P., Porta, H.
The study examined how osmotic stress and cytosolic Ca²⁺ signaling regulate autophagy in plants by monitoring the dynamics of RFP‑tagged ATG8i. Both stimuli altered the accumulation of RFP‑ATG8i‑labeled autophagosomes in an organ‑specific way, and colocalization with the ER marker HDEL indicated that ATG8i participates in ER‑phagy during stress.
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.
The autophagy-related genes AtATG5 and AtATG7 influence reserve mobilisation and responses to ABA during seed germination in Arabidopsis thaliana
Authors: Contreras, E., Sanchez-Vicente, I., Pastor-Mora, E., Aylon-Rodriguez, M., Gonzalez-Ceballos, M., Delgado-Gutierrez, M. A., Lorenzo, O., Vicente-Carbajosa, J., Iglesias-Fernandez, R.
The study examines how autophagy-related genes AtATG5 and AtATG7 influence Arabidopsis seed germination and ABA responses, revealing that atg5 and atg7 mutants germinate more slowly and display altered lipid droplet and protein storage vacuole organization. Transcriptomic and immunolocalization analyses show delayed ABI5 decay and a direct interaction between ATG8 and the autophagy machinery, implicating autophagy in seed reserve mobilization via transcription factor turnover.
The study investigated how Arabidopsis thaliana SR protein kinases (AtSRPKs) regulate alternative RNA splicing by using chemical inhibitors of SRPK activity. Inhibition with SPHINX31 and SRPIN340 caused reduced root growth and loss of root hairs, accompanied by widespread changes in splicing and phosphorylation of genes linked to root development and other cellular processes. Multi‑omics analysis (transcriptomics and phosphoproteomics) revealed that AtSRPKs modulate diverse splicing factors and affect the splicing landscape of numerous pathways.
The study reveals that root hair cells rely on elevated autophagy to extend their lifespan, and that loss-of-function mutations in autophagy genes ATG2, ATG5, or ATG7 trigger premature, cell-autonomous death mediated by NAC transcription factors ANAC046 and ANAC087. This uncovers an antagonistic interaction between autophagy and a developmentally programmed cell death pathway that controls root hair longevity, highlighting a potential target for improving nutrient and water uptake in crops.
The study reveals that root hair-forming trichoblast cells in Arabidopsis thaliana display higher autophagic flux than adjacent atrichoblast cells, a difference linked to cell fate determination. Elevated autophagy in trichoblasts is required for vacuolar sodium sequestration, contributing to salt‑stress tolerance, whereas disrupting autophagy in these cells impairs ion accumulation and survival. Cell‑type‑specific genetic complementation restores both autophagy and stress resilience, highlighting a developmental program that tailors autophagy for environmental adaptation.