Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Multipartite coevolution shapes plant apoplastic immunity against rice blast fungus

Authors: Takeda, T., Shimizu, M., Kodan, A., Utsushi, H., Kanzaki, E., Natsume, S., Imai, T., Oikawa, K., Abe, A., Terauchi, R.

Date: 2025-07-06 · Version: 1
DOI: 10.1101/2025.07.03.663104

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study demonstrates that a beta‑1,3‑glucan‑binding protein from the rice blast fungus Magnaporthe oryzae interacts with the rice thaumatin‑like protein OsPR5, which sequesters the fungal protein to trigger immunity, while the fungus secretes thaumatin‑binding proteins to counteract this defense. Additionally, a rice cell‑surface receptor kinase containing a thaumatin domain has evolved to detect the fungal GBP, highlighting a complex coevolutionary arms race in the rice apoplast.

beta‑1,3‑glucan‑binding protein Magnaporthe oryzae Oryza sativa thaumatin‑like proteins co‑evolutionary immunity

Exploring phenotypic and genetic variation in Lactuca with GWAS in L. sativa and L. serriola

Authors: Mehrem, S. L., Van den Ackerveken, G., Snoek, B. L.

Date: 2025-07-01 · Version: 1
DOI: 10.1101/2025.06.27.661939

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study generated a phenotypic dataset for 550 Lactuca accessions, including 20 wild relatives, and applied an iterative two‑step GWAS using a jointly processed SNP set for cultivated lettuce (L. sativa) and its wild progenitor (L. serriola) to dissect trait loci. Known and novel QTLs for anthocyanin accumulation, leaf morphology, and pathogen resistance were identified, with several L. serriola‑specific QTLs revealing unique genetic architectures, underscoring the breeding value of wild lettuce species.

Lactuca wild relatives anthocyanin accumulation leaf morphology pathogen resistance GWAS