Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 66 Papers

Decoding stage-specific symbiotic programs in the Rhizophagus irregularis-tomato interaction using single-nucleus transcriptomics

Authors: Stuer, N., Leroy, T., Eekhout, T., De Keyser, A., Staut, J., De Rybel, B., Vandepoele, K., Van Damme, P., Van Dingenen, J., Goormachtig, S.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701092

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study generated the first single‑nucleus RNA‑sequencing dataset of tomato (Solanum lycopersicum) roots colonized by the arbuscular mycorrhizal fungus Rhizophagus irregularis, revealing distinct transcriptional programs in epidermal and cortical cells across stages of arbuscule development. Using unsupervised subclustering and a Motif‑Informed Network Inference (MINI‑EX) approach, the authors identified candidate transcription factors that may coordinate cell‑cycle reactivation and nutrient integration during symbiosis, offering a resource for future functional genetics.

arbuscular mycorrhizal symbiosis single-nucleus RNA sequencing Solanum lycopersicum transcription factor network inference root cortical development

A Savory-based Formulation for Sustainable Management of Early Blight caused by Alternaria solani and Preservation of Tomato Fruit Quality

Authors: Lak, F., Omrani, A., Nikkhah, M. J., Gohari, A. M., Nicolaisen, M., Abuali, M., Ahmadzadeh, M.

Date: 2026-01-22 · Version: 1
DOI: 10.64898/2026.01.20.700539

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study assessed three savory essential oil–based formulations for controlling early blight caused by Alternaria solani in tomato, finding that formulation CC2020 most effectively reduced disease severity in both in vitro and greenhouse trials. CC2020 also helped maintain tomato fruit vitamin C levels and lowered fungal melanin production, indicating dual benefits for disease suppression and fruit quality.

early blight Solanum lycopersicum savory essential oil biocompatible formulation fruit quality

Initiation of asexual reproduction by the AP2/ERF gene GEMMIFER in Marchantia polymorpha

Authors: Takahashi, G., Yamaya, S., Romani, F., Bonter, I., Ishizaki, K., Shimamura, M., Kiyosue, T., Haseloff, J., Hirakawa, Y.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699827

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identifies the AP2/ERF transcription factor GEMMIFER (MpGMFR) as essential for asexual reproduction in the liverwort Marchantia polymorpha, showing that loss of MpGMFR via genome editing or amiRNA abolishes gemma and gemma cup formation, while dexamethasone‑induced activation triggers their development. Transient strong activation of MpGMFR initiates gemma initial cells at the meristem, which mature into functional gemmae, indicating MpGMFR is both necessary and sufficient for meristem‑derived asexual propagule formation.

MpGMFR AP2/ERF gemmae Marchantia polymorpha asexual reproduction

Investigating the apical notch, apical dominance and meristem regeneration in Marchantia polymorpha.

Authors: Marron, A. O.

Date: 2026-01-10 · Version: 5
DOI: 10.1101/2024.02.04.575544

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

Using laser ablation microscopy, the study dissected the role of the first cell row and a contiguous stem cell quorum in the apical notches of germinating Marchantia gemmae, revealing that these cells are essential for meristem activity and that apical notches communicate via auxin‑mediated signals to regulate dominance and regeneration. The findings support a model of intra‑, inter‑, and extra‑notch communication governing meristem formation and maintenance in Marchantia.

meristem maintenance apical dominance laser ablation microscopy auxin signaling Marchantia gemma

MATERNAL AUTOPHAGY CONTRIBUTES TO GRAIN YIELD IN MAIZE

Authors: Tang, J., Avin-Wittenberg, T., Vollbrecht, E., Bassham, D.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697098

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study shows that maize plants carrying autophagy-defective atg10 mutations exhibit delayed flowering and significant reductions in kernel size, weight, and number, culminating in lower grain yield. Reciprocal crossing experiments reveal that the maternal genotype, rather than the seed genotype, primarily drives the observed kernel defects, suggesting impaired nutrient remobilization from maternal tissues during seed development.

autophagy atg10 mutant maize yield maternal effect nutrient remobilization

The interplay between autophagy and the carbon/nitrogen ratio as key modulator of the auxin-dependent chloronema-caulonema developmental transition in Physcomitrium patens.

Authors: Pettinari, G., Liberatore, F., Mary, V., Theumer, M., Lascano, R., Saavedra, L. L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.28.696759

Category: Plant Biology

Model Organism: Physcomitrium patens

AI Summary

Using the bryophyte Physcomitrium patens, the study shows that loss of autophagy enhances auxin‑driven caulonemata differentiation and colony expansion under low nitrogen or imbalanced carbon/nitrogen conditions, accompanied by higher internal IAA, reduced PpPINA expression, and up‑regulated RSL transcription factors. Autophagy appears to suppress auxin‑induced differentiation during nutrient stress, acting as a hub that balances metabolic cues with hormonal signaling.

autophagy auxin signaling carbon/nitrogen ratio Physcomitrium patens caulonemata development

Dynamic regulation of protein homeostasis underlies acquiredthermotolerance in Arabidopsis

Authors: Bajaj, M., Allu, A. D., Rao, B. J.

Date: 2025-12-26 · Version: 3
DOI: 10.1101/2023.08.04.552042

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Thermopriming enhances heat stress tolerance by orchestrating protein maintenance pathways: it activates the heat shock response (HSR) via HSFA1 and the unfolded protein response (UPR) while modulating autophagy to clear damaged proteins. Unprimed seedlings cannot mount these responses, leading to proteostasis collapse, protein aggregation, and death, highlighting the primacy of HSR and protein maintenance over clearance mechanisms.

thermopriming heat shock response unfolded protein response autophagy proteostasis

Exogenous auxins for proline regulation in heat-stressed plants

Authors: Kaleh, A. M., Whalen, J. K.

Date: 2025-12-22 · Version: 1
DOI: 10.64898/2025.12.20.695708

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The abstract proposes that microbial indole-3-acetic acid (IAA) enhances plant thermotolerance by regulating proline metabolism, coordinating early osmoprotective synthesis with later catabolism to support growth and redox balance during heat stress. This regulation is hypothesized to involve integration of auxin perception (HSP90‑TIR1), MAPK signaling (MPK‑IAA8), mitochondrial redox components (SSR1, HSCA2) and interactions with abscisic acid and ethylene, offering a framework for using auxin‑producing microbes to boost heat resilience.

microbial indole-3-acetic acid thermomorphogenesis proline metabolism auxin signaling heat stress resilience

A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha

Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.

Date: 2025-12-13 · Version: 1
DOI: 10.64898/2025.12.11.693594

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.

SABATH methyltransferases Marchantia polymorpha gibberellin metabolism far‑red light response developmental regulation

Carbon availability acts via cytokinins to promote gemma cup formation in Marchantia polymorpha

Authors: Humphreys, J. L., Fisher, T. J., Perez, T. A., Flores-Sandoval, E., Silvestri, A., Rubio-Somoza, I., Barbier, F. F.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.08.692956

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study demonstrates that carbon availability promotes gemma cup formation in Marchantia polymorpha by activating cytokinin signaling, which up‑regulates the transcription factors MpGCAM1 and MpSTG. Pharmacological and genetic manipulations showed that cytokinin accumulation in response to sucrose and high light is sufficient to overcome low‑sucrose repression, and that this pathway operates independently of KAI2A‑MAX2 mediated karrikin signaling. The findings suggest a conserved carbon‑cytokinin interaction governing developmental plasticity across land plants.

gemma cup formation carbon availability cytokinin signaling Marchantia polymorpha MpGCAM1/MpSTG transcription factors
Page 1 of 7 Next