The study examined leaf pavement cell shape complexity across a natural European aspen (Populus tremula) population, using GWAS to pinpoint the transcription factor MYB305a as a regulator of cell geometry. Functional validation showed that MYB305a expression is induced by drought and contributes to shape simplification, with cell complexity negatively correlated with water-use efficiency and climatic variables of the genotypes' origin.
A genome‑wide association study of 187 bread wheat genotypes identified 812 significant loci linked to 25 spectral vegetation indices under rainfed drought conditions, revealing a major QTL hotspot on chromosome 2A that accounts for up to 20% of variance in greenness and pigment traits. Candidate gene analysis at this hotspot uncovered stress‑responsive genes, demonstrating that vegetation indices are heritable digital phenotypes useful for selection and genetic analysis of drought resilience.
Using laser ablation microscopy, the study dissected the role of the first cell row and a contiguous stem cell quorum in the apical notches of germinating Marchantia gemmae, revealing that these cells are essential for meristem activity and that apical notches communicate via auxin‑mediated signals to regulate dominance and regeneration. The findings support a model of intra‑, inter‑, and extra‑notch communication governing meristem formation and maintenance in Marchantia.
The interplay between autophagy and the carbon/nitrogen ratio as key modulator of the auxin-dependent chloronema-caulonema developmental transition in Physcomitrium patens.
Authors: Pettinari, G., Liberatore, F., Mary, V., Theumer, M., Lascano, R., Saavedra, L. L.
Using the bryophyte Physcomitrium patens, the study shows that loss of autophagy enhances auxin‑driven caulonemata differentiation and colony expansion under low nitrogen or imbalanced carbon/nitrogen conditions, accompanied by higher internal IAA, reduced PpPINA expression, and up‑regulated RSL transcription factors. Autophagy appears to suppress auxin‑induced differentiation during nutrient stress, acting as a hub that balances metabolic cues with hormonal signaling.
The abstract proposes that microbial indole-3-acetic acid (IAA) enhances plant thermotolerance by regulating proline metabolism, coordinating early osmoprotective synthesis with later catabolism to support growth and redox balance during heat stress. This regulation is hypothesized to involve integration of auxin perception (HSP90‑TIR1), MAPK signaling (MPK‑IAA8), mitochondrial redox components (SSR1, HSCA2) and interactions with abscisic acid and ethylene, offering a framework for using auxin‑producing microbes to boost heat resilience.
Using a forward genetic screen of 284 Arabidopsis thaliana accessions, the study identified extensive natural variation in root endodermal suberin and pinpointed the previously unknown gene SUBER GENE1 (SBG1) as a key regulator. GWAS and protein interaction analyses revealed that SBG1 controls suberin deposition by binding type‑one protein phosphatases (TOPPs), with disruption of this interaction or TOPP loss‑of‑function altering suberin levels, linking the pathway to ABA signaling.
Root growth promotion by Penicillium melinii: mechanistic insights and agricultural applications
Authors: Gutierrez-Manso, L., Devesa-Aranguren, I., Conesa, C. M., Monteoliva-Garcia, G., Gonzalez-Sayer, S., Lozano-Enguita, A., Blasio, F., Ugena, L., Nolasco, J., Vazquez-Mora, A., Levy, C. C. B., Ariel Otero, E., Fernandez-Calvo, P., Moreno-Risueno, M. A., petrik, I., Pencik, A., Reguera, M., Gonzalez-Bodi, S., Huerta-Cepas, J., Sacristan, S., del Pozo, J. C., Cabrera, J.
The study characterizes the endophytic fungus Penicillium melinii, isolated from Arabidopsis thaliana roots, as a plant‑growth‑promoting agent that enhances root architecture and biomass across Arabidopsis, quinoa, and tomato. Integrated phenotypic, transcriptomic, and hormonal analyses reveal that the fungus stimulates auxin‑related pathways and modest stress responses, leading to increased tomato yield in field trials, underscoring its value as a model for root development and a sustainable biostimulant.
The study demonstrates that salinity stress induces a photomorphogenic‑like response in dark‑grown Arabidopsis thaliana seedlings, resulting in reduced apical hook curvature and impaired soil emergence. This phenotype is linked to disrupted asymmetric epidermal cell elongation, decreased auxin signaling and PIN3 abundance on the hook’s concave side, repression of BBX28 expression, and loss of a spatial COP1 gradient, highlighting spatial regulation as a key factor in stress‑affected seedling development.
The study reveals that rice perceives Xanthomonas oryzae pv. oryzae outer membrane vesicles through a rapid calcium signal that triggers plasma‑membrane nanodomain formation and the re‑organisation of defence‑related proteins, establishing an early immune response. Without this Ca2+ signal, OMVs are not recognized and immunity is weakened.
The study compares the iron-poor oceanic diatom Thalassiosira oceanica with the iron-rich coastal species T. pseudonana to uncover how diatoms adapt to low-iron conditions. Using photo‑physiological measurements, proteomic profiling, and focused ion beam scanning electron microscopy, the researchers show that each species remodels chloroplast compartments and exhibits distinct mitochondrial architectures to maintain chloroplast‑mitochondrial coupling under iron limitation.