The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.
A comprehensive multi‑environment trial of 437 maize testcross hybrids derived from 38 MLN‑tolerant lines and 29 testers identified additive genetic effects as the primary driver of grain yield, disease resistance, and drought tolerance. Strong general combining ability and specific combining ability patterns were uncovered, with top hybrids delivering up to 5.75 t ha⁻¹ under MLN pressure while maintaining high performance under optimum and drought conditions. The study provides a framework for selecting elite parents and exploiting both additive and non‑additive effects to develop resilient maize hybrids for sub‑Saharan Africa.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
PlantCV v4: Image analysis software for high-throughput plant phenotyping
Authors: Schuhl, H., Brown, K. E., Sheng, H., Bhatt, P. K., Gutierrez, J., Schneider, D., Casto, A. L., Acosta-Gamboa, L., Ballenger, J. G., Barbero, F., Braley, J., Brown, A. M., Chavez, L., Cunningham, S., Dilhara, M., Dimech, A. M., Duenwald, J. G., Fischer, A., Gordon, J. M., Hendrikse, C., Hernandez, G. L., Hodge, J. G., Huber, M., Hurr, B. M., Jarolmasjed, S., Medina Jimenez, K., Kenney, S., Konkel, G., Kutschera, A., Lama, S., Lohbihler, M., Lorence, A., Luebbert, C., Ly, N., Manching, H. K., Marrano, A., Meerdink, S., Miklave, N. M., Mudrageda, P., Murphy, K. M., Peery, J. D., Pierik, R., Polyd
PlantCV v4 is an open-source Python framework that simplifies image-based plant phenotyping by providing extensive tutorials and streamlined installation, enabling users with limited coding skills to automate trait extraction. The release adds support for fluorescence, thermal, and hyperspectral imaging and introduces a new subpackage for morphological measurements such as leaf angle, which is validated against manual data collection methods.
The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The study presents an optimized Agrobacterium-mediated transformation protocol for bread wheat that incorporates a GRF4‑GIF1 fusion to enhance regeneration and achieve genotype‑independent transformation across multiple cultivars. The approach consistently improves transformation efficiency while limiting pleiotropic effects, offering a versatile platform for functional genomics and gene editing in wheat.
Phenotypic scoring of Canola Blackleg severity using machine learning image analysis
Authors: Hu, Q., Anderson, S. N., Gardner, S., Ernst, T. W., Koscielny, C. B., Bahia, N. S., Johnson, C. G., Jarvis, A. C., Hynek, J., Coles, N., Falak, I., Charne, D. R., Ruidiaz, M. E., Linares, J. N., Mazis, A., Stanton, D. J.
The study introduces a deep‑learning based image analysis pipeline that scores blackleg disease severity from stem cross‑section images of canola species, achieving greater consistency than median expert raters while preserving comparable heritability of susceptibility traits. This standardized scoring method aims to improve selection of resistant varieties in breeding programs.