Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 11 Papers

NT-C2-Dependent Phosphoinositide Binding Controls PLASTID MOVEMENT IMPAIRED1 Localization and Function

Authors: Cieslak, D., Staszalek, Z., Hermanowicz, P., Łabuz, J. M., Dobrowolska, G., Sztatelman, O.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697064

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the extended NT‑C2 domain of Plastid Movement Impaired 1 (PMI1) as the main membrane‑binding module that interacts with PI4P and PI(4,5)P2, requiring basic residues for plasma‑membrane association. Calcium binding by the NT‑C2 domain modulates its phosphoinositide preference, and cytosolic Ca2+ depletion blocks blue‑light‑induced PMI1 redistribution, indicating that both the NT‑C2 domain and adjacent intrinsically disordered regions are essential for PMI1’s role in chloroplast movement.

chloroplast movement PMI1 NT-C2 domain phosphoinositide binding calcium signaling

GWAs reveals SUBER GENE1-mediated suberization via Type One Phosphatases

Authors: Han, J.-P., Lefebvre-Legendre, L., Yu, J., Capitao, M. B., Beaulieu, C., Gully, K., Shukla, V., Wu, Y., Boland, A., Nawrath, C., Barberon, M.

Date: 2025-12-12 · Version: 2
DOI: 10.1101/2025.05.06.652434

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Using a forward genetic screen of 284 Arabidopsis thaliana accessions, the study identified extensive natural variation in root endodermal suberin and pinpointed the previously unknown gene SUBER GENE1 (SBG1) as a key regulator. GWAS and protein interaction analyses revealed that SBG1 controls suberin deposition by binding type‑one protein phosphatases (TOPPs), with disruption of this interaction or TOPP loss‑of‑function altering suberin levels, linking the pathway to ABA signaling.

suberin deposition Arabidopsis thaliana GWAS SBG1 TOPP phosphatases

Development alters genotype-environment interactions and shapes adaptation in Arabidopsis

Authors: Lawrence-Paul, E. H., Janakiraman, J., Lawrence-Paul, M. R., Ben-Zeev, R., Xu, Y., Penn, A., Lasky, J. R.

Date: 2025-11-03 · Version: 2
DOI: 10.1101/2025.05.13.653704

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates how the timing of the vegetative phase change (VPC) in Arabidopsis thaliana influences drought adaptation, revealing strong genotype-by-environment interactions that create stage-specific fitness tradeoffs. Genotypes from warmer, drier Iberian climates transition earlier, and genome-wide association mapping identifies loci linked to VPC timing and drought response, with several candidates validated using T‑DNA insertion lines.

vegetative phase change drought adaptation genotype-by-environment interaction GWAS developmental trade‑offs

Ca2+ signature-dependent control of auxin sensitivity in Arabidopsis

Authors: Song, H., Baudon, A., Freund, M., Randuch, M., Pencik, A., Ondrej, N., He, Z., Kaufmann, K., Gilliham, M., Friml, J., Hedrich, R., Huang, S.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.04.680446

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses an optogenetic ChannelRhodopsin 2 variant (XXM2.0) to generate defined cytosolic Ca²⁺ transients in Arabidopsis root cells, revealing that these Ca²⁺ signatures suppress auxin‑induced membrane depolarization, Ca²⁺ spikes, and auxin‑responsive transcription, leading to reversible inhibition of cell division and elongation. This demonstrates that optogenetically imposed Ca²⁺ signals act as dynamic regulators of auxin sensitivity in roots.

auxin signaling calcium signaling optogenetics Arabidopsis root cell division inhibition

Identification of a novel link connecting indole-3-acetamide with abscisic acid biosynthesis and signaling

Authors: Moya-Cuevas, J., Ortiz-Garcia, P., Gonzalez Ortega-Villizan, A., Viguera-Leza, I., Perez-Gonzalez, A., Paz-Ares, J., Alonso-Blanco, C., Vicente-Carbajosa, J., Pollmann, S.

Date: 2025-08-20 · Version: 1
DOI: 10.1101/2025.08.15.670611

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

A genome-wide association study of 166 Iberian Arabidopsis accessions identified loci, including ABA3 and GA2ox2, that modulate the inhibitory effect of the auxin precursor indole-3-acetamide (IAM) on primary root elongation. Integrating sequence analysis, transcriptomics, 3D protein modeling, and mutant physiology revealed that IAM promotes ABA biosynthesis and signaling, uncovering a novel node of hormone crosstalk.

indole-3-acetamide (IAM) abscisic acid (ABA) signaling Arabidopsis thaliana GWAS hormone crosstalk

Jasmonate Primes Plant Responses to Extracellular ATP through Purinoceptor P2K1

Authors: Jewell, J. B., Carlton, A., Tolley, J. P., Bartley, L. E., Tanaka, K.

Date: 2025-08-12 · Version: 2
DOI: 10.1101/2024.11.07.622526

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that jasmonate (JA) enhances Arabidopsis thaliana responses to extracellular ATP (eATP) by upregulating the eATP receptor P2K1 and amplifying eATP‑induced cytosolic Ca²⁺ spikes and transcriptional reprogramming in a COI1‑dependent manner, whereas salicylic acid pretreatment suppresses these responses. These findings reveal a JA‑mediated priming mechanism that potentiates eATP signaling during stress.

extracellular ATP jasmonate signaling P2K1 receptor COI1 calcium signaling

The CATION CALCIUM EXCHANGER 4 (CCX4) regulates LRX1-related root hair development through Ca2+ homeostasis

Authors: Hou, X., Tortora, G., Herger, A., Buratti, S., Dobrev, P. I., Vaculikov, R., Lacek, J., Sotiropoulos, A. G., Kadler, G., Schaufelberger, M., Candeo, A., Bassi, A., Wicker, T., Costa, A., Ringli, C.

Date: 2025-06-27 · Version: 1
DOI: 10.1101/2025.06.25.660713

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified a suppressor mutation (sune42) in the Golgi-localized Ca2+ transporter CCX4 that alleviates the dominant‑negative root hair phenotype caused by the extensin‑less LRX1ΔE14 protein in Arabidopsis. Detailed Ca2+ imaging showed that LRX1ΔE14 disrupts tip‑focused cytoplasmic Ca2+ oscillations, a defect rescued by the sune42 mutation, highlighting the role of Golgi‑mediated Ca2+ homeostasis in root hair growth.

calcium signaling root hair development LRX1 extensin domain CCX4 Golgi transporter Ca2+ homeostasis

MLO-mediated Ca2+ influx regulates root hair tip growth in Arabidopsis

Authors: Ogawa, S. T., Zhang, W., Staiger, C. J., Kessler, S. A.

Date: 2025-04-10 · Version: 1
DOI: 10.1101/2025.04.08.647801

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that constitutively active MLO (faNTA) can rescue the fer-4 root‑hair bursting and polarity defects, restoring tip‑focused cytosolic Ca2+ oscillations and ROS accumulation, highlighting a FERONIA‑MLO signaling module that governs Ca2+ influx and ROS production during root‑hair tip growth. Genetic analysis of mlo15-4 further confirms MLO15 as a key regulator of these Ca2+ and ROS dynamics. The findings suggest MLO proteins act downstream of FER to coordinate calcium and ROS signals essential for root‑hair integrity.

root hair tip growth calcium signaling reactive oxygen species FERONIA receptor kinase MLO proteins

High and low exogenous nitrate concentrations produce distinct calcium signatures in Arabidopsis roots

Authors: Shrivastava, S., Singh, D., Zielinski, R. E., Marshall-Colon, A.

Date: 2025-03-07 · Version: 1
DOI: 10.1101/2025.03.03.641058

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Using an Arabidopsis line expressing the CBL1‑mRuby2‑GCaMP6s calcium reporter, the study uncovered distinct calcium signatures in intact root tissues when exposed to high (5 mM) and low (0.25 mM) nitrate concentrations. Root hairs displayed prominent calcium waves and spikes, while non‑hair epidermal cells showed asynchronous or absent responses, indicating cell‑type‑specific and nitrate‑concentration‑dependent calcium signaling.

calcium signaling nitrate response Arabidopsis thaliana root hair calcium dynamics GCaMP6s imaging

MYB59 is linked to natural variation of water use associated with warmer temperatures in Arabidopsis thaliana

Authors: Ferguson, J. N., Brendel, O., Bechtold, U.

Date: 2025-02-28 · Version: 1
DOI: 10.1101/2025.02.27.640580

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study surveyed vegetative water use and life‑history traits across Arabidopsis thaliana ecotypes in both controlled and outdoor environments to assess how climatic history shapes water‑use strategies. Trait‑climate correlations and genome‑wide association analyses uncovered that ecotypes from warmer regions exhibit higher water use, and identified MYB59 as a key gene whose temperature‑linked alleles affect water consumption, a finding validated using myb59 mutants. These results indicate that temperature‑driven adaptive differentiation partly explains intraspecific water‑use variation.

water-use variation Arabidopsis thaliana climate adaptation GWAS MYB59
Page 1 of 2 Next