Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 5 Papers

Rubisco Dark Inhibition in Angiosperms Shows a Complex Distribution Pattern

Authors: Nehls-Ramos, C., Carmo-Silva, E., Orr, D. J.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689527

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.

Rubisco dark inhibition flowering plants phylogenetic analysis photosynthetic regulation CO2-fixing enzyme

A plant-centric investigation of Class B Flavin-dependent Monooxygenase evolution and structural diversity

Authors: Christensen, J. M., Neilson, E. H.

Date: 2025-09-16 · Version: 1
DOI: 10.1101/2025.09.16.676513

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study presents a plant‑focused phylogenetic analysis of class B flavin‑dependent monooxygenases, identifying eight distinct families and revealing lineage‑specific diversification, especially in the NADPH‑binding domain. Using known FMOs as baits, they assembled flavin‑related proteins from key Viridiplantae lineages, performed domain architecture and motif analyses, and reclassified several families, providing a framework for future functional studies.

Class B flavin-dependent monooxygenases phylogenetic analysis Viridiplantae domain architecture motif analysis

Single-cell-resolved calcium and organelle dynamics in resistosome-mediated cell death

Authors: Chen, Y.-F., Lin, K.-Y., Huang, C.-Y., Hou, L.-Y., Yuen, E. L. H., Sun, W.-C. J., Chiang, B.-J., Chang, C.-W., Wang, H.-Y., Bozkurt, T. O., Wu, C.-H.

Date: 2025-07-01 · Version: 1
DOI: 10.1101/2025.06.27.662017

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study visualizes subcellular dynamics following activation of the NRC4 resistosome, showing that NRC4 enrichment at the plasma membrane triggers calcium influx, followed by sequential disruption of mitochondria, plastids, endoplasmic reticulum, and cytoskeleton, culminating in plasma membrane rupture and cell death. These observations define a temporally ordered cascade of organelle and membrane events that execute plant immune cell death.

NLR resistosome calcium signaling organelle disruption cell death cascade plant immunity

Large-scale single-cell profiling of stem cells uncovers redundant regulators of shoot development and yield trait variation

Authors: Xu, X., Passalacqua, M., Rice, B., Demesa-Arevalo, E., Kojima, M., Takebayashi, Y., Harris, B., Sakakibara, H., Gallavotti, A., Gillis, J., Jackson, D.

Date: 2025-04-17 · Version: 2
DOI: 10.1101/2024.03.04.583414

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study finely dissected shoot stem cell–enriched tissues from maize and Arabidopsis thaliana and optimized single‑cell RNA‑seq protocols to reliably capture CLAVATA3 and WUSCHEL‑expressing cells. Cross‑species comparison and functional validation, including spatial transcriptomics and mutant analyses, revealed conserved ribosome‑associated RNA‑binding proteins and sugar‑kinase families as key regulators linked to shoot development and yield traits.

single-cell RNA sequencing shoot stem cells Arabidopsis thaliana Zea mays stem cell regulators

The auxin gatekeepers: Evolution and diversification of the YUCCA family

Authors: Vijayanathan, M., Faryad, A., Abeywickrama, T. D., Christensen, J. M., Neilson, E. H.

Date: 2025-04-14 · Version: 1
DOI: 10.1101/2025.04.11.648386

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors conducted a comprehensive phylogenetic and sequence analysis of the conserved YUCCA (YUC) gene family across representative plant lineages, classifying the family into six major classes and 41 subclasses. They linked YUC diversification to protein sequence conservation and spatial/temporal gene expression patterns, providing a framework for future functional investigations of auxin biosynthesis.

YUCCA gene family indole-3-acetic acid phylogenetic analysis gene family diversification auxin biosynthesis