Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 20 Papers

NT-C2-Dependent Phosphoinositide Binding Controls PLASTID MOVEMENT IMPAIRED1 Localization and Function

Authors: Cieslak, D., Staszalek, Z., Hermanowicz, P., Łabuz, J. M., Dobrowolska, G., Sztatelman, O.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697064

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the extended NT‑C2 domain of Plastid Movement Impaired 1 (PMI1) as the main membrane‑binding module that interacts with PI4P and PI(4,5)P2, requiring basic residues for plasma‑membrane association. Calcium binding by the NT‑C2 domain modulates its phosphoinositide preference, and cytosolic Ca2+ depletion blocks blue‑light‑induced PMI1 redistribution, indicating that both the NT‑C2 domain and adjacent intrinsically disordered regions are essential for PMI1’s role in chloroplast movement.

chloroplast movement PMI1 NT-C2 domain phosphoinositide binding calcium signaling

Exogenous auxins for proline regulation in heat-stressed plants

Authors: Kaleh, A. M., Whalen, J. K.

Date: 2025-12-22 · Version: 1
DOI: 10.64898/2025.12.20.695708

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The abstract proposes that microbial indole-3-acetic acid (IAA) enhances plant thermotolerance by regulating proline metabolism, coordinating early osmoprotective synthesis with later catabolism to support growth and redox balance during heat stress. This regulation is hypothesized to involve integration of auxin perception (HSP90‑TIR1), MAPK signaling (MPK‑IAA8), mitochondrial redox components (SSR1, HSCA2) and interactions with abscisic acid and ethylene, offering a framework for using auxin‑producing microbes to boost heat resilience.

microbial indole-3-acetic acid thermomorphogenesis proline metabolism auxin signaling heat stress resilience

Root growth promotion by Penicillium melinii: mechanistic insights and agricultural applications

Authors: Gutierrez-Manso, L., Devesa-Aranguren, I., Conesa, C. M., Monteoliva-Garcia, G., Gonzalez-Sayer, S., Lozano-Enguita, A., Blasio, F., Ugena, L., Nolasco, J., Vazquez-Mora, A., Levy, C. C. B., Ariel Otero, E., Fernandez-Calvo, P., Moreno-Risueno, M. A., petrik, I., Pencik, A., Reguera, M., Gonzalez-Bodi, S., Huerta-Cepas, J., Sacristan, S., del Pozo, J. C., Cabrera, J.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.05.692050

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the endophytic fungus Penicillium melinii, isolated from Arabidopsis thaliana roots, as a plant‑growth‑promoting agent that enhances root architecture and biomass across Arabidopsis, quinoa, and tomato. Integrated phenotypic, transcriptomic, and hormonal analyses reveal that the fungus stimulates auxin‑related pathways and modest stress responses, leading to increased tomato yield in field trials, underscoring its value as a model for root development and a sustainable biostimulant.

Penicillium melinii plant growth‑promoting fungus root architecture auxin signaling biostimulant

Salt stress disrupts local auxin and COP1 gradients in Arabidopsis apical hooks

Authors: van Veen, E., Kupers, J. J., Chen, X., Tang, Y. H., De Zeeuw, T., Duijts, K., Hayes, S., Testerink, C., Gommers, C. M. M.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.03.691840

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that salinity stress induces a photomorphogenic‑like response in dark‑grown Arabidopsis thaliana seedlings, resulting in reduced apical hook curvature and impaired soil emergence. This phenotype is linked to disrupted asymmetric epidermal cell elongation, decreased auxin signaling and PIN3 abundance on the hook’s concave side, repression of BBX28 expression, and loss of a spatial COP1 gradient, highlighting spatial regulation as a key factor in stress‑affected seedling development.

apical hook salinity stress COP1 spatial gradient auxin signaling BBX28 repression

SPOROCYTELESS/NOZZLE acts together with MADS-domain transcription factors to regulate an auxin-dependent network controlling the Megaspore Mother Cell development

Authors: Cavalleri, A., Astori, C., Manrique, S., Bruzzaniti, G., Smaczniak, C., Mizzotti, C., Ruiu, A., Spano, M., Movilli, A., Gregis, V., Xu, X., Kaufmann, K., Colombo, L.

Date: 2025-11-26 · Version: 2
DOI: 10.1101/2025.03.11.641985

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study elucidates the SPL/NZZ‑dependent regulatory pathway governing megaspore mother cell (MMC) differentiation, revealing that SPL/NZZ directly targets genes and interacts with ovule‑identity MADS‑domain transcription factor complexes. Integration of multi‑omics data with genetic complementation and mutant analyses uncovers an auxin‑dependent downstream network that drives MMC formation.

megaspore mother cell SPL/NZZ MADS‑domain transcription factors auxin signaling regulatory network

Sphingolipid-driven interleaflet coupling orchestrates Rho-GTPase recruitment to nanodomains for signal activation in plants

Authors: Montrazi, M., Poitout, A., Depenveiller, C., Bayle, V., Nagano, M., Mamode Cassim, A., Jolivet, M.-D., Fiche, J.-B., Sarazin, C., Fouillen, L., Simon-Plas, F., Crowet, J.-M., Jaillais, Y., MONGRAND, S., Martiniere, A., BOUTTE, Y.

Date: 2025-11-07 · Version: 1
DOI: 10.1101/2025.11.06.686946

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that very long chain sphingolipids in the outer membrane leaflet interdigitate with inner‑leaflet phosphatidylserine, forming a vertical bridge that organizes PS nanodomains and enables auxin‑induced activation of the Rho‑GTPase ROP6. Disruption of sphingolipid biosynthesis disperses these nanodomains, impairing ROP6 signaling, cytoskeletal dynamics, and directional growth, highlighting interleaflet coupling as a key mechanism linking membrane asymmetry to plant signal transduction.

interleaflet coupling sphingolipids phosphatidylserine nanodomains ROP6 activation auxin signaling

Cytosolic Ca2+ as a universal signal for rapid root growth regulation

Authors: Randuch, M., Kulich, I., Vladimirtsev, D., Huang, S., Hedrich, R., Friml, J.

Date: 2025-10-17 · Version: 1
DOI: 10.1101/2025.10.17.683082

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that a rapid increase in cytosolic Ca²⁺ is the primary and sufficient signal mediating auxin‑induced root growth inhibition in Arabidopsis. Using live imaging, microfluidics, and optogenetic control of Ca²⁺ influx, the authors show that blocking Ca²⁺ entry prevents growth responses, while light‑triggered Ca²⁺ influx from the apoplast or ER mimics inhibition, indicating that diverse stimuli converge on a Ca²⁺‑dependent mechanism.

root growth auxin signaling cytosolic calcium optogenetics rapid growth inhibition

Ca2+ signature-dependent control of auxin sensitivity in Arabidopsis

Authors: Song, H., Baudon, A., Freund, M., Randuch, M., Pencik, A., Ondrej, N., He, Z., Kaufmann, K., Gilliham, M., Friml, J., Hedrich, R., Huang, S.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.04.680446

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses an optogenetic ChannelRhodopsin 2 variant (XXM2.0) to generate defined cytosolic Ca²⁺ transients in Arabidopsis root cells, revealing that these Ca²⁺ signatures suppress auxin‑induced membrane depolarization, Ca²⁺ spikes, and auxin‑responsive transcription, leading to reversible inhibition of cell division and elongation. This demonstrates that optogenetically imposed Ca²⁺ signals act as dynamic regulators of auxin sensitivity in roots.

auxin signaling calcium signaling optogenetics Arabidopsis root cell division inhibition

Jasmonate Primes Plant Responses to Extracellular ATP through Purinoceptor P2K1

Authors: Jewell, J. B., Carlton, A., Tolley, J. P., Bartley, L. E., Tanaka, K.

Date: 2025-08-12 · Version: 2
DOI: 10.1101/2024.11.07.622526

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that jasmonate (JA) enhances Arabidopsis thaliana responses to extracellular ATP (eATP) by upregulating the eATP receptor P2K1 and amplifying eATP‑induced cytosolic Ca²⁺ spikes and transcriptional reprogramming in a COI1‑dependent manner, whereas salicylic acid pretreatment suppresses these responses. These findings reveal a JA‑mediated priming mechanism that potentiates eATP signaling during stress.

extracellular ATP jasmonate signaling P2K1 receptor COI1 calcium signaling

ERAD machinery controls the conditional turnover of PIN-LIKES in plants

Authors: Noura, S., Ferreira Da Silva Santos, J., Feraru, E., Hoernstein, S. N. W., Feraru, M. I., Montero-Morales, L., Roessling, A.-K., Scheuring, D., Strasser, R., Huesgen, P. F., Waidmann, S., Kleine-Vehn, J.

Date: 2025-07-06 · Version: 1
DOI: 10.1101/2025.07.05.663279

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the endoplasmic reticulum‑associated degradation (ERAD) pathway governs the proteasome‑dependent turnover of PIN‑LIKES (PILS) auxin transport proteins under normal conditions, and that both internal and external cues modulate this process via the ERAD complex. These findings link ER protein homeostasis to auxin‑mediated growth regulation, highlighting a new mechanism by which plants adapt to environmental and developmental signals.

auxin signaling PIN-LIKES (PILS) ER-associated degradation (ERAD) proteasome-dependent degradation protein turnover
Page 1 of 2 Next