Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 33 Papers

Overexpression of PtaHDG11 enhances drought tolerance and suppresses trichome formation in Populus tremula x Populus alba

Authors: Fendel, A., Fladung, M., Bruegmann, T.

Date: 2026-01-13 · Version: 1
DOI: 10.64898/2026.01.12.699028

Category: Plant Biology

Model Organism: Populus tremula × Populus alba

AI Summary

The study identified the poplar homolog of Arabidopsis HDG11 and generated transgenic poplar hybrids overexpressing PtaHDG11. Constitutive expression conferred markedly improved drought tolerance, as evidenced by higher leaf water content, reduced oxidative damage, up‑regulation of antioxidant genes, and greater post‑stress biomass, while also causing a glabrous phenotype. These results highlight PtaHDG11 as a promising target for breeding drought‑resilient trees.

HDG11 drought tolerance Populus hybrid antioxidant genes transgenic overexpression

NT-C2-Dependent Phosphoinositide Binding Controls PLASTID MOVEMENT IMPAIRED1 Localization and Function

Authors: Cieslak, D., Staszalek, Z., Hermanowicz, P., Łabuz, J. M., Dobrowolska, G., Sztatelman, O.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697064

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the extended NT‑C2 domain of Plastid Movement Impaired 1 (PMI1) as the main membrane‑binding module that interacts with PI4P and PI(4,5)P2, requiring basic residues for plasma‑membrane association. Calcium binding by the NT‑C2 domain modulates its phosphoinositide preference, and cytosolic Ca2+ depletion blocks blue‑light‑induced PMI1 redistribution, indicating that both the NT‑C2 domain and adjacent intrinsically disordered regions are essential for PMI1’s role in chloroplast movement.

chloroplast movement PMI1 NT-C2 domain phosphoinositide binding calcium signaling

The CCCH Zinc Finger Gene PgCCCH50 from Pearl Millet Confers Drought and Salt Tolerance through an ABA-Dependent PgAREB1-PgCCCH50 Module

Authors: xie, z., zhu, J., Yu, G., Ma, X., Zhou, Y., Yan, H., Huang, L.

Date: 2025-12-25 · Version: 1
DOI: 10.64898/2025.12.23.696222

Category: Plant Biology

Model Organism: Pennisetum glaucum

AI Summary

The authors performed a genome-wide analysis of 53 CCCH zinc‑finger genes in pearl millet, identified seven stress‑responsive members and demonstrated that overexpressing PgC3H50 in Arabidopsis enhances drought and salt tolerance. They showed that the ABA‑responsive transcription factor PgAREB1 directly binds the PgC3H50 promoter, activating its expression, as confirmed by yeast one‑hybrid, dual‑luciferase and EMSA assays, defining a new PgAREB1‑PgC3H50 regulatory module.

CCCH zinc finger proteins drought tolerance salinity stress ABA signaling Pearl millet

Universal modules for decoding amplitude and frequency of Ca2+ signals in plants

Authors: Vergara-Valladares, F., Rubio-Melendez, M. E., Charpentier, M., Michard, E., Dreyer, I.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.13.694100

Category: Plant Biology

Model Organism: General

AI Summary

The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.

calcium signaling EF‑hand Ca2+ binding protein decoding modules plant calcium sensors signal amplitude and frequency

Genetic Insights from Line x Tester Analysis of Maize Lethal Necrosis Testcrosses for Developing Multi-Stress-Resilient Hybrids in Sub-Saharan Africa

Authors: Gowda, M., Beyene, Y., L.M., S., Ogugo, V., Amadu, M. K., Chaikam, V.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.07.692857

Category: Plant Biology

Model Organism: Zea mays

AI Summary

A comprehensive multi‑environment trial of 437 maize testcross hybrids derived from 38 MLN‑tolerant lines and 29 testers identified additive genetic effects as the primary driver of grain yield, disease resistance, and drought tolerance. Strong general combining ability and specific combining ability patterns were uncovered, with top hybrids delivering up to 5.75 t ha⁻¹ under MLN pressure while maintaining high performance under optimum and drought conditions. The study provides a framework for selecting elite parents and exploiting both additive and non‑additive effects to develop resilient maize hybrids for sub‑Saharan Africa.

maize lethal necrosis (MLN) drought tolerance grain yield combining ability GGE biplot

Ca2+-driven nanodomain enrichment and plasma membrane proteome remodelling enable bacterial outer membrane vesicle perception in rice

Authors: Mondal, I., Das, H., Behera, S.

Date: 2025-12-02 · Version: 2
DOI: 10.1101/2025.09.17.676730

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study reveals that rice perceives Xanthomonas oryzae pv. oryzae outer membrane vesicles through a rapid calcium signal that triggers plasma‑membrane nanodomain formation and the re‑organisation of defence‑related proteins, establishing an early immune response. Without this Ca2+ signal, OMVs are not recognized and immunity is weakened.

Xanthomonas oryzae pv. oryzae outer membrane vesicles calcium signaling plasma membrane nanodomains proteomics

Consistent drought regulation in grapevine is driven by directional transcription factor activity

Authors: Vasquez-Marambio, G., Moyano, T., Navarro, D., Sequeida, A., Gainza-Cortes, F., Matus, J. T., Orellana, A., Alvarez, J. M.

Date: 2025-11-16 · Version: 1
DOI: 10.1101/2025.11.14.688560

Category: Plant Biology

Model Organism: Vitis vinifera

AI Summary

The study performed a meta‑transcriptomic analysis of over twenty drought versus control experiments in Vitis vinifera and two hybrid rootstocks, identifying a core set of 4,617 drought‑responsive genes. Using transcription factor binding motif enrichment and random‑forest machine learning, gene regulatory networks were built, revealing key regulators such as ABF2, MYB30A, and a novel HMG‑box protein. These regulators and network hierarchies provide candidate targets for breeding and biotechnological improvement of grapevine drought tolerance.

drought tolerance Vitis vinifera gene regulatory network transcription factors meta‑transcriptomics

The O-glycosyltransferase SECRET AGENT Participates in Abscisic Acid-Induced Microtubule Remodeling and Stomatal Closure in Arabidopsis thaliana

Authors: Sun, P., Wu, Y., Wang, P., Hu, M., Wang, Z., Yu, R., Li, J.

Date: 2025-10-31 · Version: 1
DOI: 10.1101/2025.10.29.683829

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the Arabidopsis O-GlcNAc transferase SEC is essential for timely ABA‑induced stomatal closure and drought tolerance, with sec-5 mutants showing delayed closure and increased water loss, while SEC overexpression enhances responsiveness. SEC influences guard‑cell microtubule remodeling, as loss of SEC impairs microtubule reorganization and SEC directly interacts with tubulin α‑4, suggesting tubulin as a target of O‑GlcNAcylation.

O-GlcNAc transferase ABA-induced stomatal closure microtubule dynamics drought tolerance Arabidopsis thaliana

Spatiotemporal Analysis Reveals Mechanisms Controlling Reactive Oxygen Species and Calcium Interplay Following Root Compression

Authors: Vinet, P., Audemar, V., Durand-Smet, P., Frachisse, J.-M., Thomine, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683952

Category: Plant Biology

Model Organism: General

AI Summary

Using a microfluidic valve rootchip, the study simultaneously tracked ROS and calcium dynamics in compressed roots and found three kinetic phases linking mechanosensitive channel activity, NADPH oxidase‑dependent ROS accumulation, and secondary calcium influx. Pharmacological inhibition revealed that a fast calcium response is mediated by plasma‑membrane mechanosensitive channels, while a slower calcium increase is driven by ROS production.

mechanotransduction reactive oxygen species calcium signaling microfluidic compression root biology

Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)

Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.

Date: 2025-10-21 · Version: 1
DOI: 10.1101/2025.10.20.683360

Category: Plant Biology

Model Organism: Pinus nigra

AI Summary

The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.

drought tolerance Pinus nigra metabolomics transcriptomics phenotyping
Page 1 of 4 Next