The study investigates the gene regulatory network (GRN) controlling flowering time in the allotetraploid crop Brassica napus by comparing its transcriptome to that of Arabidopsis thaliana. While most orthologous gene pairs show conserved expression dynamics, several flowering‑time genes display regulatory divergence, especially under cold conditions, indicating subfunctionalisation among paralogues. Despite these differences, the overall GRN topology remains similar to Arabidopsis, likely due to retention of multiple paralogues.
The study profiled the maize (Zea mays) endosperm transcriptome for the first four days after pollination using laser-capture microdissection, revealing temporal co‑expression modules including a fertilization‑activated subset. Network analyses linked MYB‑related transcription factors to basal endosperm transfer layer (BETL) differentiation and E2F transcription factors, together with TOR‑dependent sugar sensing, to early endosperm proliferation and kernel size variation.
The study used comparative transcriptomics of dorsal and ventral petals across development, alongside expression profiling in floral symmetry mutants, to identify genes linked to dorsal (AmCYC-dependent) and ventral (AmDIV-dependent) identities in Antirrhinum majus. In situ hybridisation validated axis‑specific and boundary‑localized expression patterns, revealing that a conserved NGATHA‑LIKE1‑BRASSINAZOLE‑RESISTANT1‑miR164 module has been co‑opted to regulate AmDIV targets and shape the corolla. These findings delineate regulatory modules coordinating dorsoventral and proximal‑distal patterning in zygomorphic flowers.
The study sequenced genomes of ericoid mycorrhiza‑forming liverworts and experimentally reconstituted the symbiosis, revealing a nutrient‑regulated state that supports intracellular colonization. Comparative transcriptomics identified an ancestral gene module governing intracellular symbiosis, and functional validation in Marchantia paleacea through genetic manipulation, phylogenetics, and transactivation assays confirmed its essential role. The findings suggest plants have retained and independently recruited this ancestral module for diverse intracellular symbioses.
The study investigates the role of the chromatin regulator MpSWI3, a core subunit of the SWI/SNF complex, in the liverwort Marchantia polymorpha. A promoter mutation disrupts male gametangiophore development and spermiogenesis, causing enhanced vegetative propagation, and transcriptomic analysis reveals that MpSWI3 regulates genes controlling reproductive initiation, sperm function, and asexual reproduction, highlighting its ancient epigenetic role in balancing vegetative and reproductive phases.
RNA sequencing of the halophyte Salicornia europaea revealed that combined hypoxia‑salt stress triggers a unique transcriptional response, with 16% of genes specifically altered and distinct synergistic, antagonistic, and additive effects across functional pathways. Metabolic analyses indicated enhanced sucrose and trehalose metabolism, a shift toward lactate fermentation, and increased proline synthesis, highlighting complex regulatory strategies for coping with concurrent stresses.
In a controlled dry-down experiment, Arabis sagittata showed significantly higher recovery from drought than the endangered Arabis nemorensis, a difference that could not be traced to a single major QTL, indicating a polygenic basis. Transcriptome and small‑RNA sequencing revealed that A. sagittata mounts a stronger transcriptional response, including species‑specific regulation of the conserved drought miRNA miR408, and machine‑learning identified distinct cis‑regulatory motif patterns underlying these divergent stress‑response networks.
The study examined whether colonisation by the arbuscular mycorrhizal fungus Rhizophagus irregularis primes immune responses in barley against the leaf rust pathogen Puccinia hordei. While AMF did not affect disease severity or plant growth, co‑infected leaves showed heightened expression of defence genes and transcriptome reprogramming, including altered protein ubiquitination, indicating a priming mechanism. These results highlight transcriptional and post‑translational pathways through which AMF can enhance barley disease resistance for sustainable crop protection.
Molecular and Phenotypic Characterization of Telomere Repeat Binding (TRBs) Proteins in Moss: Evolutionary and Functional Perspectives
Authors: Kusova, A., Hola, M., Goffova Petrova, I., Rudolf, J., Zachova, D., Skalak, J., Hejatko, J., Klodova, B., Prerovska, T., Lycka, M., Sykorova, E., Bertrand, Y. J. K., Fajkus, J., Honys, D., Prochazkova Schrumpfova, P.
The study characterizes telomere repeat binding (TRB) proteins in the model moss Physcomitrium patens, demonstrating that individual PpTRB genes are essential for normal protonemal and gametophore development and that loss of TRBs leads to telomere shortening, mirroring findings in seed plants. Transcriptome analysis of TRB mutants shows altered expression of genes linked to transcription regulation and stimulus response, while subcellular localization confirms nuclear residence and mutual interaction of PpTRBs, underscoring their conserved role in telomere maintenance across land plants.
The study used comparative transcriptomics across Erysimum species to identify two 2‑oxoglutarate‑dependent dioxygenases, CARD5 and CARD6, responsible for the 14β‑ and 21‑hydroxylation steps in cardenolide biosynthesis in Erysimum cheiranthoides. Knockout mutants lacking these genes accumulated pathway intermediates, and transient expression in Nicotiana benthamiana confirmed their enzymatic functions, while structural modeling pinpointed residues linked to neofunctionalization.