The study employed ultra large‑scale 2D clinostats to grow tomato (Solanum lycopersicum) plants beyond the seedling stage under simulated microgravity and upright control conditions across five sequential trials. Simulated microgravity consistently affected plant growth, but the magnitude and direction of the response varied among trials, with temperature identified as a significant co‑variant; moderate heat stress surprisingly enhanced growth under simulated microgravity. These results highlight the utility of large‑scale clinostats for dissecting interactions between environmental factors and simulated microgravity in plant development.
The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.
The study identified a heat‑responsive exon‑skipping event in the basic Helix‑Loop‑Helix domain of the transcription factor PIF4, which reduces PIF4 activity and promotes photomorphogenic traits in etiolated seedlings. This reveals a novel post‑transcriptional mechanism by which plants modulate PIF4 function during heat stress.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study identifies two diel regulatory modules that coordinate plant cuticle formation: the LRB‑phyB‑PIF4 pathway suppresses wax biosynthesis during daylight, while the COP1‑CFLAP1 pathway promotes cutin accumulation at night. Degradation of phyB and CFLAP1 via specific E3 ubiquitin ligases modulates the activity of transcription factors PIF4 and BDG1 to ensure timely cuticle assembly.
The study investigated metabolic responses of kale (Brassica oleracea) grown under simulated microgravity using a 2-D clinostat versus normal gravity conditions. LC‑MS data were analyzed with multivariate tools such as PCA and volcano plots to identify gravity‑related metabolic adaptations and potential molecular markers for spaceflight crop health.
The study shows that high ambient temperature triggers extensive changes in ROS homeostasis in Arabidopsis seedlings, with H2O2 balance being essential for thermomorphogenic hypocotyl elongation. PIF4 directly activates catalase genes CAT2 and CAT3 to regulate H2O2 levels, forming a PIF4‑CAT‑H2O2 module that operates alongside the PIF4‑auxin pathway, while elevated H2O2 feeds back to reduce PIF4 protein abundance.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
The study demonstrates that the microtubule‑associated protein WDL4 is essential for PhyB‑dependent thermomorphogenic and photomorphogenic responses in Arabidopsis, as wdl4-3 mutants mimic phyB loss‑of‑function phenotypes under varying temperatures and light conditions. Genetic analyses reveal that PIF4 activity is required for wdl4-3 hypocotyl hyper‑elongation, and while exogenous auxin can rescue pif4‑related defects, it does not restore the wdl4-3 specific elongation, indicating additional regulatory layers.