The study characterizes a conserved RNA structural element named DEAD within DEAD-box helicase genes in land plants, showing that it functions as a sensor of helicase activity to regulate alternative splicing in Arabidopsis thaliana. By modulating the folding of DEAD, the plant balances helicase transcript and protein levels via a negative feedback loop, and loss of this regulation leads to widespread splicing disruptions and severe stress phenotypes.
The study demonstrates that short‑term low phosphate treatment delays leaf senescence in rice by increasing photosynthetic pigments, enhancing antioxidant enzyme activities, and reducing oxidative damage, whereas high phosphate accelerates senescence. CRISPR/Cas9 editing of MIR827 to lower Pi levels also postpones senescence, while overexpression of MIR827 or MIR399, which raises Pi, speeds it up. Transcriptomic profiling reveals coordinated changes in senescence‑associated and metabolic pathways underlying the low‑phosphate response.
The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.
The study identified a heat‑responsive exon‑skipping event in the basic Helix‑Loop‑Helix domain of the transcription factor PIF4, which reduces PIF4 activity and promotes photomorphogenic traits in etiolated seedlings. This reveals a novel post‑transcriptional mechanism by which plants modulate PIF4 function during heat stress.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
Integrating physiological, transcriptomic, and cellular analyses, the study shows that olive fruit abscission zones undergo lignification, alkalization, and extensive cell‑wall remodeling during natural maturation and after ethephon treatment. A set of 733 FAZ‑specific genes, including β‑1,3‑glucanases, pectate lyases, and pH‑regulating transporters, were identified, and increased glucanase activity together with reduced plasmodesmata callose suggest enhanced intercellular communication facilitates organ detachment in this non‑climacteric fruit.
The study identifies two diel regulatory modules that coordinate plant cuticle formation: the LRB‑phyB‑PIF4 pathway suppresses wax biosynthesis during daylight, while the COP1‑CFLAP1 pathway promotes cutin accumulation at night. Degradation of phyB and CFLAP1 via specific E3 ubiquitin ligases modulates the activity of transcription factors PIF4 and BDG1 to ensure timely cuticle assembly.
The study demonstrates that limonene, a natural essential‑oil component, strongly inhibits Fusarium oxysporum, the causal agent of potato dry rot, by impairing colony growth, hyphal morphology, spore viability, membrane integrity, and transcription/translation processes, as well as disrupting ion homeostasis. Combined treatments reveal additive effects with mancozeb and synergistic effects with hymexazol, highlighting limonene's potential as an eco‑friendly bio‑fungicide for potato disease management.
The study shows that high ambient temperature triggers extensive changes in ROS homeostasis in Arabidopsis seedlings, with H2O2 balance being essential for thermomorphogenic hypocotyl elongation. PIF4 directly activates catalase genes CAT2 and CAT3 to regulate H2O2 levels, forming a PIF4‑CAT‑H2O2 module that operates alongside the PIF4‑auxin pathway, while elevated H2O2 feeds back to reduce PIF4 protein abundance.
Gain and loss of gene function shaped the nickel hyperaccumulation trait in Noccaea caerulescens
Authors: Belloeil, C., Garcia de la Torre, V. S., Contreras Aguilera, R., Kupper, H., Lopez-Roques, C., Iampetro, C., Vandecasteele, C., Klopp, C., Launay-Avon, A., Leemhuis, W., Yamjabok, J., van den Heuvel, J., Aarts, M. G. M., Quintela Sabaris, C., Thomine, S., MERLOT, S.
The study presents a high-quality genome assembly for the nickel hyperaccumulator Noccaea caerulescens and uses it as a reference for comparative transcriptomic analyses across different N. caerulescens accessions and the non‑accumulating relative Microthlaspi perfoliatum. It identifies a limited set of metal transporters (NcHMA3, NcHMA4, NcIREG2, and NcIRT1) whose elevated expression correlates with hyperaccumulation, and demonstrates that frameshift mutations in NcIRT1 can abolish the trait, indicating an ancient, transporter‑driven origin of nickel hyperaccumulation.