The study investigates the Arabidopsis ribosomal protein RPS6A and its role in auxin‑related root growth, revealing that rps6a mutants display shortened primary roots, fewer lateral roots, and defective vasculature that are not rescued by exogenous auxin. Cell biological observations and global transcriptome profiling show weakened auxin signaling and reduced levels of PIN auxin transporters in the mutant, indicating a non‑canonical function of the ribosomal subunit in auxin pathways.
The study constructs a ~1‑million‑cell single‑nuclei transcriptome atlas of Arabidopsis leaves to reveal that drought stress accelerates transcriptional programs associated with maturation and aging, thereby limiting leaf growth in proportion to stress intensity. Targeted upregulation of FERRIC REDUCTION OXIDASE 6 in mesophyll cells partially rescues leaf growth under drought, demonstrating the functional relevance of these transcriptional changes.