The study reanalyzed 1,107 public grapevine RNA‑seq datasets to build condition‑specific gene expression atlases and a whole‑genome co‑expression network associated with drought stress, and deployed these resources via a web‑based Hydric Stress Atlas App. Network topology analysis identified candidate hub genes that could serve as molecular markers or targets for gene editing to improve drought tolerance in Vitis vinifera.
Priming of retrograde signaling in wheat across multiple natural environments reveal how responses to dynamic stimuli can be integrated to alter yield, yield stability and water productivity
Authors: Bowerman, A. F., Moore, M., Yadav, A., Zhang, J., Mortimer, M. D., Plskova, Z., Tee, E. E., Au, E. K., Collinge, D. P., Estavillo, G. M., Howitt, C. A., Chan, K. X., Rebetzke, G. J., Pogson, B. J.
The study generated wheat (Triticum aestivum) mutants with targeted deletions in the SAL gene family (TaSAL1 and TaSAL2) to assess the impact of chloroplast-to-nucleus retrograde signaling on field performance. Across 15 diverse Australian field trials, TaSAL2 deletions conferred 4–8% higher yields and improved water productivity by maintaining photosynthetic efficiency and dynamic stomatal control under drought, whereas TaSAL1 deletions reduced yields. These results demonstrate that locus‑specific retrograde signaling modifications can simultaneously enhance yield and stress resilience in a major crop.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.
Robustness of high-throughput prediction of leaf ecophysiological traits using near infra-red spectroscopy and poro-fluorometry
Authors: Coindre, E., Boulord, R., Chir, L., Freitas, V., Ryckewaert, M., Laisne, T., Bouckenooghe, V., Lis, M., Cabrera-Bosquet, L., Doligez, A., Simonneau, T., Pallas, B., Coupel-Ledru, A., Segura, V.
The study evaluated high‑throughput spectroscopy and poro‑fluorometry to predict leaf morphological and ecophysiological traits in a grapevine diversity panel under well‑watered and drought conditions. Spectroscopy reliably estimated leaf mass per area and water content, while poro‑fluorometry accurately predicted net CO2 assimilation, and the derived predicted traits showed substantial broad‑sense heritability. These results demonstrate that non‑destructive, rapid phenotyping tools can support genetic analyses of drought‑related traits in grapevine.