The authors applied semi‑supervised deep‑learning to super‑resolution images of modern and fossil grass pollen, training convolutional neural networks to extract abstract morphological features. These features were used to quantify past grass community diversity and C3:C4 ratios in a 25,000‑year lake‑sediment record, revealing a marked diversity loss during the last glacial and a gradual decline of C4 grasses in the Holocene.
The authors introduce AdaPoinTr, a geometry-aware transformer that predicts the alpha‑shape of coniferous tree crowns from incomplete terrestrial or mobile laser‑scanning point clouds, focusing on crown reconstruction rather than full tree completion. Trained on synthetically generated partial crowns, the model consistently improves crown shape similarity and reduces height estimation bias across three diverse forest datasets, providing a cost‑effective solution for enhanced 3D forest structural monitoring.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study assessed how well common deep learning models (ResNet, EfficientNet, Inception, MobileNet) generalize across different tomato pest and disease image datasets. While models performed well on the dataset they were trained on, they suffered substantial accuracy drops when applied to other datasets, indicating that architectural changes alone cannot overcome dataset variability. The results highlight the necessity for more diverse, representative training data to improve real-world deployment of PPD diagnostic tools.
The study investigates the role of the chromatin regulator MpSWI3, a core subunit of the SWI/SNF complex, in the liverwort Marchantia polymorpha. A promoter mutation disrupts male gametangiophore development and spermiogenesis, causing enhanced vegetative propagation, and transcriptomic analysis reveals that MpSWI3 regulates genes controlling reproductive initiation, sperm function, and asexual reproduction, highlighting its ancient epigenetic role in balancing vegetative and reproductive phases.
The study demonstrates that hyperspectral imaging can non‑destructively differentiate active nitrogen‑fixing root nodules from non‑fixing nodules and root tissue based on distinct spectral signatures. By integrating deep‑learning models, the authors created an automated nodule counting pipeline that works across multiple legume species and growth conditions, eliminating labor‑intensive manual counting and reliably detecting nodules within dense root systems.
The study introduces the Botanical Spectrum Analyzer (BSA), a GUI that incorporates a modified U‑Net deep neural network for accurate segmentation of plant images from RGB and hyperspectral (VNIR and SWIR) data. BSA was tested on wheat, barley, and Arabidopsis datasets, achieving >99% accuracy and F1‑scores above 98%, and markedly outperformed commercial tools on root segmentation tasks.
The study isolated the Plant Cysteine Oxidase/Ethylene Response Factor VII oxygen‑sensing circuit from Arabidopsis thaliana and reconstituted it in Saccharomyces cerevisiae, using a reporter to compare hypoxia‑induced transcriptional dynamics in yeast and plants. Both systems showed rapid ERFVII stabilization, but plants exhibited a larger response, which could be enhanced in yeast by adding a hypoxia‑inducible feedback loop. Computational modeling identified promoter competition and hypoxia‑inducible PCOs as key determinants of early hypoxia responses.
Phenotypic scoring of Canola Blackleg severity using machine learning image analysis
Authors: Hu, Q., Anderson, S. N., Gardner, S., Ernst, T. W., Koscielny, C. B., Bahia, N. S., Johnson, C. G., Jarvis, A. C., Hynek, J., Coles, N., Falak, I., Charne, D. R., Ruidiaz, M. E., Linares, J. N., Mazis, A., Stanton, D. J.
The study introduces a deep‑learning based image analysis pipeline that scores blackleg disease severity from stem cross‑section images of canola species, achieving greater consistency than median expert raters while preserving comparable heritability of susceptibility traits. This standardized scoring method aims to improve selection of resistant varieties in breeding programs.