The study constructs a ~1‑million‑cell single‑nuclei transcriptome atlas of Arabidopsis leaves to reveal that drought stress accelerates transcriptional programs associated with maturation and aging, thereby limiting leaf growth in proportion to stress intensity. Targeted upregulation of FERRIC REDUCTION OXIDASE 6 in mesophyll cells partially rescues leaf growth under drought, demonstrating the functional relevance of these transcriptional changes.
The study demonstrates that abscisic acid (ABA) accumulates in darkness to suppress cotyledon opening during seedling deetiolation, and that light exposure lifts this repression, enabling cotyledon aperture. Genome‑wide transcriptional and alternative‑splicing changes accompany this process, and the light‑dependent regulation requires the splicing factors RS40 and RS41, whose activity is repressed in the dark.