The study generated a temporal physiological and metabolomic map of leaf senescence in diverse maize inbred lines differing in stay‑green phenotype, identifying 84 metabolites associated with senescence and distinct metabolic signatures between stay‑green and non‑stay‑green lines. Integration of metabolite data with genomic information uncovered 56 candidate genes, and reverse‑genetic validation in maize and Arabidopsis demonstrated conserved roles for phenylpropanoids such as naringenin chalcone and eriodictyol in regulating senescence.
RNA‑seq of 328 wheat lines using a pan‑genome reference uncovered over 20,000 additional transcripts beyond the Chinese Spring genome and enabled construction of a pan‑gene eQTL regulatory atlas. Multi‑omics integration identified 231 high‑confidence candidate genes influencing 34 agronomic traits and powdery mildew resistance, with functional validation showing 80% of candidates affecting trait phenotypes via an EMS mutant library.
This review compiles experimental studies on wheat to assess how elevated CO₂, higher temperatures, and water deficit interact and affect productivity and water use. By calculating plasticity indices, the authors find that despite CO₂‑induced gains, overall yield generally declines under combined stress, while water consumption often decreases. They highlight the need for more data to improve and validate crop models under future climate scenarios.
The study introduces Transposase-Accessible Chromosome Conformation Capture (TAC-C), which combines ATAC‑seq and Hi‑C to map fine‑scale chromatin interactions in rice, sorghum, maize, and wheat, revealing genome‑size‑correlated loop structures and distinct C3 vs. C4 patterns. Integration with population genetics shows that loops link distal regulatory elements to phenotypic variation, and SPL transcription factors (TaSPL7/15) modulate photosynthesis‑related genes via these interactions, enhancing photosynthetic efficiency and starch content in wheat mutants.