Splicing regulation by RS2Z36 controls ovary patterning and fruit growth in tomato
Authors: Vraggalas, S., Rosenkranz, R. R., Keller, M., Perez-Perez, Y., Bachiri, S., Zehl, K., Bold, J., Simm, S., Ghatak, A., Weckwerth, W., Afjehi-Sadat, L., Chaturvedi, P., Testillano, P. S., Mueller-McNicoll, M., Zarnack, K., Fragkostefanakis, S.
The study identifies the serine/arginine-rich splicing factor RS2Z36 as a key regulator of ovary patterning and early fruit morphology in tomato, with loss‑of‑function mutants producing smaller, ellipsoid fruits and elongated pericarp cells. RNA‑seq and proteomic analyses reveal widespread alternative splicing and altered protein abundance, including novel splice‑variant peptides, while mutant pericarps show increased deposition of LM6‑detected arabinan and AGP epitopes.
Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.
The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.
The study functionally characterizes a conserved structured RNA motif (45ABC) in Arabidopsis RBP45 pre‑mRNAs, showing that its sequence and pairing elements mediate a negative auto‑ and cross‑regulatory feedback loop through alternative splicing that produces unproductive isoforms and reduces RBP45 expression. Transcriptome‑wide splicing analysis and phenotypic assessment of rbp45 mutants reveal that RBP45B plays a dominant role and that proper regulation of this motif is essential for root growth and flowering time.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
A large-scale proteomic study in Arabidopsis thaliana identified over 32,000 isoform-specific peptides, confirming that alternative splicing, particularly intron retention, produces translated protein isoforms. Integrated proteogenomic analysis, SUPPA classification, and AlphaFold modeling revealed structural impacts and a non-linear regulation of transcript and protein abundance, with mutant phenotypes linking splicing to growth, chlorophyll content, and anthocyanin accumulation.
The study shows that the membrane lipids PI4P, PI(4,5)P2, and phosphatidylserine have distinct spatial and temporal dynamics during lateral root primordium formation in Arabidopsis thaliana, with PI4P acting as a stable basal lipid, PI(4,5)P2 serving as a negative regulator of initiation, and phosphatidylserine increasing after founder cell activation. Using live-cell biosensors, genetic mutants, and an inducible PI(4,5)P2 depletion system, the authors demonstrate that reducing PI(4,5)P2 enhances lateral root initiation and development.
The study engineers Type‑B response regulators to alter their transcriptional activity and cytokinin sensitivity, enabling precise modulation of cytokinin‑dependent traits. Using tissue‑specific promoters, the synthetic transcription factors were deployed in Arabidopsis thaliana to reliably increase or decrease lateral root numbers, demonstrating a modular platform for controlling developmental phenotypes.
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.
The study characterizes the tomato class B heat shock factor SlHSFB3a, revealing its age‑dependent expression in roots and its role in enhancing lateral root density by modulating auxin homeostasis. Overexpression of SlHSFB3a increases lateral root emergence, while CRISPR‑mediated knockouts produce the opposite phenotype, indicating that SlHSFB3a regulates auxin signaling through repression of auxin repressors and activation of the ARF7/LOB20 pathway.
The study used phospho‑proteomics to uncover rapid phosphorylation changes in Arabidopsis seedlings upon light or sucrose exposure, identifying RS41 as a hyperphosphorylated SR protein. By creating single and higher‑order mutants of four RS genes, the authors demonstrated that these RS proteins are essential for photomorphogenic development and regulate light‑dependent alternative splicing, with loss of all four causing sterility.