The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The study examined nitrogen use strategies in the model alga Chlamydomonas reinhardtii by comparing growth on ammonium, nitrate, and urea, finding similar molar nitrogen utilization efficiency under saturating conditions. Rapid nitrogen uptake and storage were demonstrated through pulse experiments, and source‑specific transcriptome analysis revealed distinct regulation of assimilation pathways and transporters, supporting a model of flexible nitrogen acquisition and storage.
The study investigates how the timing of the vegetative phase change (VPC) in Arabidopsis thaliana influences drought adaptation, revealing strong genotype-by-environment interactions that create stage-specific fitness tradeoffs. Genotypes from warmer, drier Iberian climates transition earlier, and genome-wide association mapping identifies loci linked to VPC timing and drought response, with several candidates validated using T‑DNA insertion lines.
Evaluation of combined root exudate and rhizosphere microbiota sampling approaches to elucidate plant-soil-microbe interaction
Authors: Escudero-Martinez, C., Browne, E. Y., Schwalm, H., Santangeli, M., Brown, M., Brown, L., Roberts, D. M., Duff, A. M., Morris, J., Hedley, P. E., Thorpe, P., Abbott, J. C., Brennan, F., Bulgarelli, D., George, T. S., Oburger, E.
The study benchmarked several sampling approaches for simultaneous profiling of root exudates and rhizosphere microbiota in soil-grown barley, revealing consistent exudate chemistry across methods but variation in root morphology and nitrogen exudation. High‑throughput amplicon sequencing and quantitative PCR showed protocol‑specific impacts on microbial composition, yet most rhizosphere-enriched microbes were captured by all approaches. The authors conclude that different protocols provide comparable integrated data, though methodological differences must be aligned with experimental objectives.
The study investigates how maternal environmental conditions, specifically temperature and light intensity, influence seed longevity in eight Arabidopsis thaliana natural accessions. Seeds developed under higher temperature (27 °C) and high light showed increased longevity, with transcriptome analysis of the Bor-4 accession revealing dynamic changes in stored mRNAs, including upregulation of antioxidant defenses and raffinose family oligosaccharides. These findings highlight the genotype‑dependent modulation of seed traits by the maternal environment.
The study generated deep proteome and phosphoproteome datasets from guard cell‑enriched tissue to examine how phosphorylation regulates stomatal movements. Comparative analysis revealed increased phosphorylation of endomembrane trafficking and vacuolar proteins in closed stomata, supporting a role for phospho‑regulated trafficking in stomatal dynamics.
Uncovering the Molecular Regulation of Seed Development and Germination in Endangered Legume Paubrasilia echinata Through Proteomic and Polyamine Analyses
Authors: Vettorazzi, R. G., Carrari-Santos, R., Sousa, K. R., Oliveira, T. R., Grativol, C., Olimpio, G., Venancio, T. M., Pinto, V. B., Quintanilha-Peixoto, G., Silveira, V., Santa-Catarna, C.
The study examined seed maturation and germination in the endangered legume Paubrasilia echinata using proteomic and polyamine analyses at 4, 6, and 8 weeks post-anthesis, identifying over 2,000 proteins and linking specific polyamines to developmental stages. Mature seeds (6 weeks) showed elevated proteasome components, translation machinery, LEA proteins, and heat shock proteins, while polyamine dynamics revealed putrescine dominance in early development and spermidine/spermine association with desiccation tolerance and germination. These findings uncover dynamic molecular shifts underlying seed development and provide insights for conservation and propagation.
The study provides a comprehensive proteomic analysis of seed mitochondria from white lupin, revealing fully assembled OXPHOS complexes ready for immediate energy production upon imbibition. Quantitative mass‑spectrometry identified 1,162 mitochondrial proteins, highlighting tissue‑specific transporter and dehydrogenase profiles and dynamic remodeling during early germination, while many uncharacterized proteins suggest novel legume‑specific functions.
The study developed a high-throughput phenotyping platform to assess root infestation by Orobanche cumana in a diverse sunflower association mapping population and applied a dual GWAS using SNPs and k-mers to uncover resistance loci. It validated known QTLs with higher resolution, identified novel candidate genes such as leucine‑rich repeat receptor kinases, and highlighted introgressed segments from wild Helianthus species that contribute to broomrape resistance.
Light on its feet: Acclimation to high and low diurnal light is flexible in Chlamydomonas reinhardtii
Authors: Dupuis, S., Chastain, J. L., Han, G., Zhong, V., Gallaher, S. D., Nicora, C. D., Purvine, S. O., Lipton, M. S., Niyogi, K. K., Iwai, M., Merchant, S. S.
The study examined how prior light‑acclimation influences the fitness and rapid photoprotective reprogramming of Chlamydomonas during transitions between low and high diurnal light intensities. While high‑light‑acclimated cells struggled to grow and complete the cell cycle after shifting to low light, low‑light‑acclimated cells quickly remodeled thylakoid ultrastructure, enhanced photoprotective quenching, and altered photosystem protein levels, recovering chloroplast function within a single day. Transcriptomic and proteomic profiling revealed swift induction of stress‑response genes, indicating high flexibility in diurnal light acclimation.