The study investigates how the timing of the vegetative phase change (VPC) in Arabidopsis thaliana influences drought adaptation, revealing strong genotype-by-environment interactions that create stage-specific fitness tradeoffs. Genotypes from warmer, drier Iberian climates transition earlier, and genome-wide association mapping identifies loci linked to VPC timing and drought response, with several candidates validated using T‑DNA insertion lines.
The study generated deep proteome and phosphoproteome datasets from guard cell‑enriched tissue to examine how phosphorylation regulates stomatal movements. Comparative analysis revealed increased phosphorylation of endomembrane trafficking and vacuolar proteins in closed stomata, supporting a role for phospho‑regulated trafficking in stomatal dynamics.
Drought-Induced Epigenetic Memory in the cambium of Poplar Trees persists and primes future stress responses
Authors: DUPLAN, A., FENG, Y. Q., LASKAR, G., CAI, B. D., SEGURA, V., DELAUNAY, A., LE JAN, I., DAVIAUD, C., TOUMI, A., LAURANS, F., SOW, M. D., ROGIER, O., POURSAT, P., DURUFLE, H., JORGE, V., SANCHEZ, L., COCHARD, H., ALLONA, I., TOST, J., FICHOT, R., MAURY, S.
The study examined short‑term and transannual drought memory in cambium tissues of two Populus genotypes and four epitypes with modified DNA‑methylation machinery, revealing persistent hormone, transcript, and methylation changes one week after stress relief. Trees previously stressed in Year 1 displayed distinct physiological and molecular responses to a second drought in Year 2, indicating long‑term memory linked to stable CG‑context DNA methylation, with genotype‑dependent differences in plasticity and stability. These findings position the cambium as a reservoir for epigenetic stress memory and suggest exploitable epigenetic variation for tree breeding under drought.
Uncovering the Molecular Regulation of Seed Development and Germination in Endangered Legume Paubrasilia echinata Through Proteomic and Polyamine Analyses
Authors: Vettorazzi, R. G., Carrari-Santos, R., Sousa, K. R., Oliveira, T. R., Grativol, C., Olimpio, G., Venancio, T. M., Pinto, V. B., Quintanilha-Peixoto, G., Silveira, V., Santa-Catarna, C.
The study examined seed maturation and germination in the endangered legume Paubrasilia echinata using proteomic and polyamine analyses at 4, 6, and 8 weeks post-anthesis, identifying over 2,000 proteins and linking specific polyamines to developmental stages. Mature seeds (6 weeks) showed elevated proteasome components, translation machinery, LEA proteins, and heat shock proteins, while polyamine dynamics revealed putrescine dominance in early development and spermidine/spermine association with desiccation tolerance and germination. These findings uncover dynamic molecular shifts underlying seed development and provide insights for conservation and propagation.
The study identifies and functionally characterizes an acetyl‑CoA:monolignol transferase gene in Populus, showing that its overexpression elevates acetate incorporation into lignin without harming plant growth. Elevated lignin acetylation correlates with gene expression levels and markedly improves biomass pretreatability for biofuel production.
The study compared physiological and transcriptomic responses of poplar trees colonized by the ectomycorrhizal fungi Paxillus involutus or Cenococcum geophilum under normal, drought, and recovery conditions. Cenococcum-colonized plants showed constitutive up‑regulation of heat‑shock proteins, galactinol synthase, and aquaporins and maintained water status and photosynthesis during severe drought, whereas Paxillus colonization promoted growth and nitrogen‑use efficiency and enabled rapid recovery through drought‑induced leaf shedding. These contrasting strategies illustrate species‑specific positions on the growth‑defense trade‑off in ectomycorrhizal symbiosis.
The study provides a comprehensive proteomic analysis of seed mitochondria from white lupin, revealing fully assembled OXPHOS complexes ready for immediate energy production upon imbibition. Quantitative mass‑spectrometry identified 1,162 mitochondrial proteins, highlighting tissue‑specific transporter and dehydrogenase profiles and dynamic remodeling during early germination, while many uncharacterized proteins suggest novel legume‑specific functions.
The study developed a high-throughput phenotyping platform to assess root infestation by Orobanche cumana in a diverse sunflower association mapping population and applied a dual GWAS using SNPs and k-mers to uncover resistance loci. It validated known QTLs with higher resolution, identified novel candidate genes such as leucine‑rich repeat receptor kinases, and highlighted introgressed segments from wild Helianthus species that contribute to broomrape resistance.
Light on its feet: Acclimation to high and low diurnal light is flexible in Chlamydomonas reinhardtii
Authors: Dupuis, S., Chastain, J. L., Han, G., Zhong, V., Gallaher, S. D., Nicora, C. D., Purvine, S. O., Lipton, M. S., Niyogi, K. K., Iwai, M., Merchant, S. S.
The study examined how prior light‑acclimation influences the fitness and rapid photoprotective reprogramming of Chlamydomonas during transitions between low and high diurnal light intensities. While high‑light‑acclimated cells struggled to grow and complete the cell cycle after shifting to low light, low‑light‑acclimated cells quickly remodeled thylakoid ultrastructure, enhanced photoprotective quenching, and altered photosystem protein levels, recovering chloroplast function within a single day. Transcriptomic and proteomic profiling revealed swift induction of stress‑response genes, indicating high flexibility in diurnal light acclimation.
The study examined electrophysiological responses of young poplar trees to controlled stem bending and root pressurization, identifying a distinct gradual potential (GP) whose amplitude and propagation are modulated by stimulus speed and intensity. Results indicate that mechanical stress generates a transient hydraulic pressure wave that triggers the GP, suggesting a hydraulic‑electrical coupling mechanism that encodes detailed mechanical information for adaptive responses to wind.