A genome-wide survey of the white jute (Corchorus capsularis) identified 34 laccase genes, with expression profiling indicating most are active in phloem and some are up‑regulated during development and under abiotic stress. Comparative analysis with Arabidopsis and reduced expression in a low‑lignin mutant highlighted CcaLAC28 and CcaLAC32 as key candidates for regulating fibre lignification, offering targets for breeding low‑lignin jute varieties.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study examines how ectopic accumulation of methionine in Arabidopsis thaliana leaves, driven by a deregulated AtCGS transgene under a seed‑specific promoter, reshapes metabolism, gene expression, and DNA methylation. High‑methionine lines exhibit increased amino acids and sugars, activation of stress‑hormone pathways, and reduced expression of DNA methyltransferases, while low‑methionine lines show heightened non‑CG methylation without major transcriptional changes. Integrated transcriptomic and methylomic analyses reveal a feedback loop linking sulfur‑carbon metabolism, stress adaptation, and epigenetic regulation.
Drought-Induced Epigenetic Memory in the cambium of Poplar Trees persists and primes future stress responses
Authors: DUPLAN, A., FENG, Y. Q., LASKAR, G., CAI, B. D., SEGURA, V., DELAUNAY, A., LE JAN, I., DAVIAUD, C., TOUMI, A., LAURANS, F., SOW, M. D., ROGIER, O., POURSAT, P., DURUFLE, H., JORGE, V., SANCHEZ, L., COCHARD, H., ALLONA, I., TOST, J., FICHOT, R., MAURY, S.
The study examined short‑term and transannual drought memory in cambium tissues of two Populus genotypes and four epitypes with modified DNA‑methylation machinery, revealing persistent hormone, transcript, and methylation changes one week after stress relief. Trees previously stressed in Year 1 displayed distinct physiological and molecular responses to a second drought in Year 2, indicating long‑term memory linked to stable CG‑context DNA methylation, with genotype‑dependent differences in plasticity and stability. These findings position the cambium as a reservoir for epigenetic stress memory and suggest exploitable epigenetic variation for tree breeding under drought.
The study identifies and functionally characterizes an acetyl‑CoA:monolignol transferase gene in Populus, showing that its overexpression elevates acetate incorporation into lignin without harming plant growth. Elevated lignin acetylation correlates with gene expression levels and markedly improves biomass pretreatability for biofuel production.
The study compared physiological and transcriptomic responses of poplar trees colonized by the ectomycorrhizal fungi Paxillus involutus or Cenococcum geophilum under normal, drought, and recovery conditions. Cenococcum-colonized plants showed constitutive up‑regulation of heat‑shock proteins, galactinol synthase, and aquaporins and maintained water status and photosynthesis during severe drought, whereas Paxillus colonization promoted growth and nitrogen‑use efficiency and enabled rapid recovery through drought‑induced leaf shedding. These contrasting strategies illustrate species‑specific positions on the growth‑defense trade‑off in ectomycorrhizal symbiosis.
The study examined electrophysiological responses of young poplar trees to controlled stem bending and root pressurization, identifying a distinct gradual potential (GP) whose amplitude and propagation are modulated by stimulus speed and intensity. Results indicate that mechanical stress generates a transient hydraulic pressure wave that triggers the GP, suggesting a hydraulic‑electrical coupling mechanism that encodes detailed mechanical information for adaptive responses to wind.
The study examined how tomato (Solanum lycopersicum) plants respond hormonally to infection by Pseudomonas syringae pv. tomato DC3000 at two different temperatures, revealing temperature‑dependent expression of marker genes for salicylic acid, jasmonic acid, and abscisic acid pathways, while ethylene‑related genes remained unchanged. These results underscore the intricate interplay between host, pathogen, and environmental conditions in shaping plant defence.
The study compared tissue‑specific transcriptomes of the Australian pitcher plant Cephalotus follicularis with existing data from the Asian pitcher plant Nepenthes gracilis to assess molecular convergence underlying their similar leaf morphologies. Both species showed overlapping gene expression in functionally equivalent tissues and shared transcriptional activation of amino‑acid metabolism and protein synthesis after feeding, while exhibiting distinct regulation of digestive enzyme genes and several cases of combined expression and protein‑sequence convergence in glandular tissues.
The study investigated whether expression of Dormancy-Associated MADS-BOX genes DAM3 and DAM4 inversely correlates with vegetative growth during semi-dormancy induction and breaking in cultivated strawberry. DAM3 and DAM4 expression showed negative correlations with leaf area and petiole length, with DAM4 particularly reflecting growth during dormancy breaking, while no cultivar-specific chill requirement or leaf-type differences were detected. These findings support DAM3 and DAM4 as regulators of semi‑dormancy in Fragaria × ananassa.