Phenotypic scoring of Canola Blackleg severity using machine learning image analysis
Authors: Hu, Q., Anderson, S. N., Gardner, S., Ernst, T. W., Koscielny, C. B., Bahia, N. S., Johnson, C. G., Jarvis, A. C., Hynek, J., Coles, N., Falak, I., Charne, D. R., Ruidiaz, M. E., Linares, J. N., Mazis, A., Stanton, D. J.
The study introduces a deep‑learning based image analysis pipeline that scores blackleg disease severity from stem cross‑section images of canola species, achieving greater consistency than median expert raters while preserving comparable heritability of susceptibility traits. This standardized scoring method aims to improve selection of resistant varieties in breeding programs.
The study investigates the genetic basis of sex determination in Cannabis sativa, identifying a X‑chromosome locus (Monoecy1) that governs the switch between dioecy and monoecy. Transcriptomic and genomic analyses reveal three tightly linked genes with sex‑specific expression, suggesting their combined action controls both flower type and individual sex phenotype.
The study validates and quantifies biological nitrogen fixation in Mexican maize varieties and assesses a double‑haploid population derived from an elite inbred (PHZ51) crossed with these landraces. Aerial root traits show moderate to high heritability, and QTL mapping reveals multiple loci influencing root number, node occurrence, and diameter, with most favorable alleles originating from the landraces. The authors suggest that pyramiding the identified QTL into elite germplasm could enhance maize’s BNF capacity, pending field validation.
The study used QTL mapping in two F1 Plasmopara viticola populations to locate avirulence genes linked to grapevine resistance loci Rpv3.1, Rpv10, and Rpv12, confirming AvrRpv3.1 and identifying AvrRpv12, which harbors large deletions of RXLR effector genes. Additionally, a dominant locus responsible for partial Rpv10 breakdown was discovered, revealing diverse evolutionary mechanisms—including structural rearrangements and admixture—that enable the pathogen to overcome host resistance.
Using hydathode-focused inoculation, the study mapped a major QTL on Arabidopsis chromosome 5 and identified the CNL-type immune receptor SUT1 as a novel resistance gene that restricts early colonization of Xanthomonas campestris pv. campestris in hydathodes. Functional analyses showed SUT1 acts independently of the known RKS1/ZAR1 complex and provides tissue‑specific resistance, being effective primarily in hydathodes but not in xylem.
Authors: Anumalla, M., Khanna, A., Catolos, M., Ramos, J., Sta. Cruz, M. T., Venkateshwarlu, C., Konijerla, J., Pradhan, S. K., Dash, S. K., Das, Y., Chowdhury, D., Chetia, S. K., Das, J., Nath, P., Merugumala, G. R., Roy, B., Pradhan, N., Jana, M., Dana, I., Debnath, S., Nath, A., Prasad Singh, S., Iftekharuddaula, K. M., Ghosal, S., Ali, M., Khanam, S., Ul Islam, M. M., Faruquee, M., Tonny, H. J., Hasan, M. R., Rahman, A., Ali, J., Sinha, P., Singh, V., Rafiqul Islam, M., Bhosale, S., Kohli, A., Bhardwaj, H. R., Hussain, W.
The study screened 6,274 elite rice genotypes for submergence and stagnant flooding tolerance, identifying 89 lines with superior performance, including 37 that outperformed SUB1A introgression lines by 40‑50%. These elite lines harbor 86 key QTLs/genes and were used in a novel Transition from Trait to Environment (TTE) breeding strategy, achieving a 65% genetic gain for submergence tolerance and demonstrating strong performance in flood‑prone regions of India and Bangladesh.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.
A maize near-isogenic line population designed for gene discovery and characterization of allelic effects
Authors: Zhong, T., Mullens, A., Morales, L., Swarts, K., Stafstrom, W., He, Y., Sermons, S., Yang, Q., Lopez-Zuniga, L. O., Rucker, E., Thomason, W., Nelson, R., Jamann, T. M., Balint-Kurti, P., Holland, J. B.
The study characterized 1,264 maize near‑isogenic lines derived from 18 donor inbreds crossed to the recurrent parent B73, using genotyping‑by‑sequencing and SNP‑chip data to detect 2,972 introgression segments via a novel hidden Markov model pipeline. Disease phenotyping enabled QTL mapping for foliar disease resistance, revealing extensive allelic variation among donor lines, and establishing the nNIL population as a valuable resource for dissecting complex traits in maize.