Using hydathode-focused inoculation, the study mapped a major QTL on Arabidopsis chromosome 5 and identified the CNL-type immune receptor SUT1 as a novel resistance gene that restricts early colonization of Xanthomonas campestris pv. campestris in hydathodes. Functional analyses showed SUT1 acts independently of the known RKS1/ZAR1 complex and provides tissue‑specific resistance, being effective primarily in hydathodes but not in xylem.
The study investigates the role of the Arabidopsis transcription factor AtMYB93 in sulfur (S) signaling and root development, revealing that AtMYB93 mutants exhibit altered expression of S transport and metabolism genes and increased shoot S levels, while tomato plants overexpressing SlMYB93 show reduced shoot S. Transcriptomic profiling, elemental analysis, and promoter activity assays indicate that AtMYB93 contributes to root responses to S deprivation, though functional redundancy masks clear phenotypic effects on lateral and adventitious root formation.
The study examined how genetic variation among 181 wheat (Triticum aestivum) lines influences root endophytic fungal communities using ITS2 metabarcoding. Heritability estimates and GWAS identified 11 QTLs linked to fungal clade composition, highlighting genetic control of mycobiota, especially for biotrophic AMF. These findings suggest breeding can be used to modulate beneficial root-fungal associations.
The study surveyed vegetative water use and life‑history traits across Arabidopsis thaliana ecotypes in both controlled and outdoor environments to assess how climatic history shapes water‑use strategies. Trait‑climate correlations and genome‑wide association analyses uncovered that ecotypes from warmer regions exhibit higher water use, and identified MYB59 as a key gene whose temperature‑linked alleles affect water consumption, a finding validated using myb59 mutants. These results indicate that temperature‑driven adaptive differentiation partly explains intraspecific water‑use variation.
Authors: Anumalla, M., Khanna, A., Catolos, M., Ramos, J., Sta. Cruz, M. T., Venkateshwarlu, C., Konijerla, J., Pradhan, S. K., Dash, S. K., Das, Y., Chowdhury, D., Chetia, S. K., Das, J., Nath, P., Merugumala, G. R., Roy, B., Pradhan, N., Jana, M., Dana, I., Debnath, S., Nath, A., Prasad Singh, S., Iftekharuddaula, K. M., Ghosal, S., Ali, M., Khanam, S., Ul Islam, M. M., Faruquee, M., Tonny, H. J., Hasan, M. R., Rahman, A., Ali, J., Sinha, P., Singh, V., Rafiqul Islam, M., Bhosale, S., Kohli, A., Bhardwaj, H. R., Hussain, W.
The study screened 6,274 elite rice genotypes for submergence and stagnant flooding tolerance, identifying 89 lines with superior performance, including 37 that outperformed SUB1A introgression lines by 40‑50%. These elite lines harbor 86 key QTLs/genes and were used in a novel Transition from Trait to Environment (TTE) breeding strategy, achieving a 65% genetic gain for submergence tolerance and demonstrating strong performance in flood‑prone regions of India and Bangladesh.
The study performed transcriptome profiling of Cryptomeria japonica individuals from different geographic origins grown in three common gardens across Japan, assembling 77,212 transcripts guided by the species' genome. Using SNP-based genetic clustering and weighted gene co‑expression network analysis, they identified gene modules whose expression correlated with genetic differentiation, revealing that defense‑related genes are up‑regulated in Pacific‑side populations while terpenoid metabolism genes are higher in Sea‑of‑Japan populations, indicating local adaptation via regulatory changes.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.
Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits
Authors: Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Kosh Komba, E., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Vigouroux, Y., Grondin, A., Laplaze, L.
The study performed ionomic profiling and genome-wide association studies on a diverse panel of pearl millet infield across two seasons to uncover genetic factors controlling nutrient acquisition. Soil analyses revealed stable depth-dependent patterns for phosphorus and zinc, while leaf ion concentrations showed high heritability and associations with root and agronomic traits. Integrating GWAS with gene expression data identified candidate ion transport/homeostasis genes for breeding nutrient-efficient, climate-resilient millet.
A maize near-isogenic line population designed for gene discovery and characterization of allelic effects
Authors: Zhong, T., Mullens, A., Morales, L., Swarts, K., Stafstrom, W., He, Y., Sermons, S., Yang, Q., Lopez-Zuniga, L. O., Rucker, E., Thomason, W., Nelson, R., Jamann, T. M., Balint-Kurti, P., Holland, J. B.
The study characterized 1,264 maize near‑isogenic lines derived from 18 donor inbreds crossed to the recurrent parent B73, using genotyping‑by‑sequencing and SNP‑chip data to detect 2,972 introgression segments via a novel hidden Markov model pipeline. Disease phenotyping enabled QTL mapping for foliar disease resistance, revealing extensive allelic variation among donor lines, and establishing the nNIL population as a valuable resource for dissecting complex traits in maize.