The study investigates the evolutionary shift from archegonial to embryo‑sac reproduction by analyzing transcriptomes of Ginkgo reproductive organs and related species. It reveals that the angiosperm pollen‑tube guidance module MYB98‑CRP‑ECS is active in mature Ginkgo archegonia and that, while egg cell transcription is conserved, changes in the fate of other female gametophyte cells drove the transition, providing a molecular framework for this major reproductive evolution.
The study investigates the genetic basis of sex determination in Cannabis sativa, identifying a X‑chromosome locus (Monoecy1) that governs the switch between dioecy and monoecy. Transcriptomic and genomic analyses reveal three tightly linked genes with sex‑specific expression, suggesting their combined action controls both flower type and individual sex phenotype.
The study validates and quantifies biological nitrogen fixation in Mexican maize varieties and assesses a double‑haploid population derived from an elite inbred (PHZ51) crossed with these landraces. Aerial root traits show moderate to high heritability, and QTL mapping reveals multiple loci influencing root number, node occurrence, and diameter, with most favorable alleles originating from the landraces. The authors suggest that pyramiding the identified QTL into elite germplasm could enhance maize’s BNF capacity, pending field validation.
The study used QTL mapping in two F1 Plasmopara viticola populations to locate avirulence genes linked to grapevine resistance loci Rpv3.1, Rpv10, and Rpv12, confirming AvrRpv3.1 and identifying AvrRpv12, which harbors large deletions of RXLR effector genes. Additionally, a dominant locus responsible for partial Rpv10 breakdown was discovered, revealing diverse evolutionary mechanisms—including structural rearrangements and admixture—that enable the pathogen to overcome host resistance.
A comparative physiological study of persimmon cultivars with flat (Hiratanenashi) and round (Koushimaru) fruit shapes revealed that differences in cell proliferation, cell shape, and size contribute to shape variation. Principal component analysis of elliptic Fourier descriptors tracked shape changes, while histology and transcriptome profiling identified candidate genes, including a WOX13 homeobox gene, potentially governing fruit shape development.
Using hydathode-focused inoculation, the study mapped a major QTL on Arabidopsis chromosome 5 and identified the CNL-type immune receptor SUT1 as a novel resistance gene that restricts early colonization of Xanthomonas campestris pv. campestris in hydathodes. Functional analyses showed SUT1 acts independently of the known RKS1/ZAR1 complex and provides tissue‑specific resistance, being effective primarily in hydathodes but not in xylem.
The study investigates the role of the Arabidopsis transcription factor AtMYB93 in sulfur (S) signaling and root development, revealing that AtMYB93 mutants exhibit altered expression of S transport and metabolism genes and increased shoot S levels, while tomato plants overexpressing SlMYB93 show reduced shoot S. Transcriptomic profiling, elemental analysis, and promoter activity assays indicate that AtMYB93 contributes to root responses to S deprivation, though functional redundancy masks clear phenotypic effects on lateral and adventitious root formation.
Authors: Anumalla, M., Khanna, A., Catolos, M., Ramos, J., Sta. Cruz, M. T., Venkateshwarlu, C., Konijerla, J., Pradhan, S. K., Dash, S. K., Das, Y., Chowdhury, D., Chetia, S. K., Das, J., Nath, P., Merugumala, G. R., Roy, B., Pradhan, N., Jana, M., Dana, I., Debnath, S., Nath, A., Prasad Singh, S., Iftekharuddaula, K. M., Ghosal, S., Ali, M., Khanam, S., Ul Islam, M. M., Faruquee, M., Tonny, H. J., Hasan, M. R., Rahman, A., Ali, J., Sinha, P., Singh, V., Rafiqul Islam, M., Bhosale, S., Kohli, A., Bhardwaj, H. R., Hussain, W.
The study screened 6,274 elite rice genotypes for submergence and stagnant flooding tolerance, identifying 89 lines with superior performance, including 37 that outperformed SUB1A introgression lines by 40‑50%. These elite lines harbor 86 key QTLs/genes and were used in a novel Transition from Trait to Environment (TTE) breeding strategy, achieving a 65% genetic gain for submergence tolerance and demonstrating strong performance in flood‑prone regions of India and Bangladesh.
The study performed transcriptome profiling of Cryptomeria japonica individuals from different geographic origins grown in three common gardens across Japan, assembling 77,212 transcripts guided by the species' genome. Using SNP-based genetic clustering and weighted gene co‑expression network analysis, they identified gene modules whose expression correlated with genetic differentiation, revealing that defense‑related genes are up‑regulated in Pacific‑side populations while terpenoid metabolism genes are higher in Sea‑of‑Japan populations, indicating local adaptation via regulatory changes.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.