The circadian clock gates lateral root development
Authors: Nomoto, S., Mamerto, A., Ueno, S., Maeda, A. E., Kimura, S., Mase, K., Kato, A., Suzuki, T., Inagaki, S., Sakaoka, S., Nakamichi, N., Michael, T. P., Tsukagoshi, H.
The study identifies the circadian clock component ELF3 as a temporal gatekeeper that limits hormone‑induced pericycle proliferation and lateral root development in Arabidopsis thaliana. Time‑resolved transcriptomics, imaging, and genetic analyses show that ELF3 maintains rhythmic expression of key regulators via LNK1 and MADS‑box genes, and that loss of ELF3 disrupts this rhythm, enhancing callus growth and accelerating root organogenesis.
The study reveals that the microtubule-associated protein MAP70-2 integrates mechanical and biochemical signals to guide division plane orientation during early lateral root primordium formation in Arabidopsis thaliana. Dynamic MAP70-2 localization to cell corners and the cortical division zone precedes cytokinesis, and loss of MAP70-2 results in misoriented divisions and malformed lateral roots, highlighting its role in three‑dimensional differential growth under mechanical constraints.
The study demonstrates that Magnesium Iron-layered double hydroxide (MgFe-LDH) nanocarriers effectively protect and deliver fungal effector dsRNA to pea leaves, enabling sustained gene silencing of Erysiphe pisi and providing enhanced local and systemic powdery mildew resistance for up to 15 days. The LDH formulation exhibits strong leaf adherence, biocompatibility, RNase protection, and rapid uptake into plant cells and fungal haustoria, outperforming dsRNA or LDH alone.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.
The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.
AGO5 restricts virus vertical transmission in plant gametophytes
Authors: Hoffmann, G., Sadhu, S. P., Bradamante, G., Diez Marulanda, J. C., Proschwitz, A., Wegscheider, T., Turhan, I., Bente, H., Gutzat, R., Incarbone, M.
The study demonstrates that the RNAi factor AGO5, expressed in Arabidopsis thaliana shoot apical meristem stem cells and germline, markedly reduces vertical transmission of Turnip yellow mosaic virus (TYMV). Using controlled pollination with ago5 knock‑out and cell type‑specific rescue lines, the authors show that AGO5 functions in pollen and sperm cells to block virus passage, and that targeted activation of antiviral RNAi in sperm further lowers transmission rates.
Four barley genotypes were examined under simultaneous Fusarium culmorum infection and drought, revealing genotype-dependent Fusarium Head Blight severity and largely additive transcriptomic responses dominated by drought. Co‑expression and hormone profiling linked ABA and auxin to stress‑specific gene modules, and a multiple linear regression model accurately predicted combined‑stress gene expression from single‑stress data, suggesting modular regulation.
The study examined nitrogen use strategies in the model alga Chlamydomonas reinhardtii by comparing growth on ammonium, nitrate, and urea, finding similar molar nitrogen utilization efficiency under saturating conditions. Rapid nitrogen uptake and storage were demonstrated through pulse experiments, and source‑specific transcriptome analysis revealed distinct regulation of assimilation pathways and transporters, supporting a model of flexible nitrogen acquisition and storage.
The study investigates how maternal environmental conditions, specifically temperature and light intensity, influence seed longevity in eight Arabidopsis thaliana natural accessions. Seeds developed under higher temperature (27 °C) and high light showed increased longevity, with transcriptome analysis of the Bor-4 accession revealing dynamic changes in stored mRNAs, including upregulation of antioxidant defenses and raffinose family oligosaccharides. These findings highlight the genotype‑dependent modulation of seed traits by the maternal environment.
The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.