The circadian clock gates lateral root development
Authors: Nomoto, S., Mamerto, A., Ueno, S., Maeda, A. E., Kimura, S., Mase, K., Kato, A., Suzuki, T., Inagaki, S., Sakaoka, S., Nakamichi, N., Michael, T. P., Tsukagoshi, H.
The study identifies the circadian clock component ELF3 as a temporal gatekeeper that limits hormone‑induced pericycle proliferation and lateral root development in Arabidopsis thaliana. Time‑resolved transcriptomics, imaging, and genetic analyses show that ELF3 maintains rhythmic expression of key regulators via LNK1 and MADS‑box genes, and that loss of ELF3 disrupts this rhythm, enhancing callus growth and accelerating root organogenesis.
The study reveals that the thermosensor and circadian regulator ELF3 interacts with the PLT3 transcription factor in Arabidopsis root stem cell niches, forming subcellular condensates that sustain quiescent centre and columella stem cell fate. ELF3’s intrinsically disordered prion‑like domains drive condensate formation with PLT3, and PIF3/4 act as nuclear shuttles recruiting ELF3 to nuclear condensates, linking environmental cues to stem cell maintenance.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study demonstrates that ELF4 is essential for recruiting ELF3 into hypocotyl nuclei at dusk, a process that enhances ELF3’s ability to repress target gene expression and limit hypocotyl elongation, especially under short‑day conditions. Subnuclear localization patterns of ELF3 differ between hypocotyl and root tissues, indicating tissue‑specific temporal regulation by ELF4.
The study genotyped 1,013 hard red spring wheat lines using SNP arrays and targeted KASP markers to track changes in genetic diversity and the distribution of dwarfing Rht alleles over a century of North American breeding. It found shifts from Rht‑D1b to Rht‑B1b dominance, identified low‑frequency dwarf alleles at Rht24 and Rht25 that have increased recently, and revealed gene interactions that can fine‑tune plant height, along with evidence of recent selection for photoperiod sensitivity.
A forward genetic screen in light-grown Arabidopsis seedlings identified the Evening Complex component ELF3 as a key inhibitor of phototropic hypocotyl bending under high red:far-red and blue light, acting upstream of PIF4/PIF5. ELF3 and its partner LUX also mediate circadian regulation of phototropism, and the orthologous ELF3 in Brachypodium distachyon influences phototropism in the opposite direction.
The study investigates the altered timing of the core circadian oscillator gene ELF3 in wheat compared to Arabidopsis, revealing that dawn-specific expression in wheat arises from repression by TOC1. An optimized computational model integrating experimental expression data and promoter architecture predicts that wheat’s circadian oscillator remains robust despite this shift, indicating flexibility in plant circadian network design.
The study tests whether the circadian clock component ELF3 shapes developmental trait heterogeneity, proposing that faster‑developing populations are more heterogeneous early but less so at maturity, whereas slower growers show the opposite pattern. Experiments with Arabidopsis elf3 and barley Hvelf3 mutants confirmed these predictions, showing ELF3 influences hypocotyl and bolting variability via maturation rate, and that smaller barley plants exhibit increased osmotic stress resilience, suggesting ELF3‑driven heterogeneity serves as a bet‑hedging strategy.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.