The study used comparative transcriptomics to examine how Fusarium oxysporum isolates with different lifestyles on angiosperms regulate effector genes during infection of the non‑vascular liverwort Marchantia polymorpha. Core effector genes on fast core chromosomes are actively expressed in the bryophyte host, while lineage‑specific effectors linked to angiosperm pathogenicity are silent, and disruption of a compatibility‑associated core effector alters the expression of other core effectors, highlighting conserved fungal gene networks across plant lineages.
Phylogenetic analysis reveals that non‑seed plants, exemplified by the liverwort Marchantia polymorpha, possess a streamlined repertoire of cyclin and CDK genes, with only three cyclins active in a phase‑specific manner during vegetative development. Single‑cell RNA‑seq and fluorescent reporter assays, combined with functional overexpression studies, demonstrate the distinct, non‑redundant roles of MpCYCD;1, MpCYCA, and MpCYCB;1 in G1 entry, S‑phase progression, and G2/M transition, respectively.
Chromatin accessibility profiling and transcriptomics of Marchantia polymorpha heat‑shock transcription factor (HSF) mutants reveal that HSFA1 governs the placement of cis‑regulatory elements for heat‑induced gene activation, a mechanism conserved across plants, mice, and humans. Integrated gene regulatory network modeling identifies MpWRKY10 and MpABI5B as indirect regulators linking phenylpropanoid and stress pathways, while abscisic acid influences gene expression downstream of HSFA1 without broadly reshaping chromatin. A cross‑species, cross‑condition machine‑learning framework successfully predicts chromatin accessibility and expression, underscoring a conserved regulatory logic in stress responses.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.
The study mapped the subcellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha, confirming most predictions and identifying oil body cells as primary sites of terpene synthesis. Overexpression and CRISPR knockout of the ABC transporter ABCG1 revealed its essential role in retaining sesquiterpenes within oil bodies, while attempts to boost heterologous diterpene and triterpene production in oil bodies did not increase yields.