Revisiting the Central Dogma: the distinct roles of genome, methylation, transcription, and translation on protein expression in Arabidopsis thaliana
Authors: Zhong, Z., Bailey, M., Kim, Y.-I., Pesaran-Afsharyan, N., Parker, B., Arathoon, L., Li, X., Rundle, C. A., Behrens, A., Nedialkova, D. D., Slavov, G., Hassani-Pak, K., Lilley, K. S., Theodoulou, F. L., Mott, R.
The study combined long‑read whole‑genome assembly, multi‑omics profiling (DNA methylation, mRNA, ribosome‑associated transcripts, tRNA abundance, and protein levels) in two Arabidopsis thaliana accessions to evaluate how genomic information propagates through the Central Dogma. Codon usage in gene sequences emerged as the strongest predictor of both mRNA and protein abundance, while methylation, tRNA levels, and ribosome‑associated transcripts contributed little additional information under stable conditions.
The study examined how genetic variation among 181 wheat (Triticum aestivum) lines influences root endophytic fungal communities using ITS2 metabarcoding. Heritability estimates and GWAS identified 11 QTLs linked to fungal clade composition, highlighting genetic control of mycobiota, especially for biotrophic AMF. These findings suggest breeding can be used to modulate beneficial root-fungal associations.
The study surveyed vegetative water use and life‑history traits across Arabidopsis thaliana ecotypes in both controlled and outdoor environments to assess how climatic history shapes water‑use strategies. Trait‑climate correlations and genome‑wide association analyses uncovered that ecotypes from warmer regions exhibit higher water use, and identified MYB59 as a key gene whose temperature‑linked alleles affect water consumption, a finding validated using myb59 mutants. These results indicate that temperature‑driven adaptive differentiation partly explains intraspecific water‑use variation.
The study performed a comprehensive computational analysis of the Arabidopsis thaliana proteome, classifying 48,359 proteins by melting temperature (Tm) and melting temperature index (TI) and linking thermal stability to amino acid composition, molecular mass, and codon usage. Machine‑learning and evolutionary analyses revealed that higher molecular mass and specific codon pairs correlate with higher Tm, and that gene duplication has driven the evolution of high‑Tm proteins, suggesting a genomic basis for stress resilience.
Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits
Authors: Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Kosh Komba, E., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Vigouroux, Y., Grondin, A., Laplaze, L.
The study performed ionomic profiling and genome-wide association studies on a diverse panel of pearl millet infield across two seasons to uncover genetic factors controlling nutrient acquisition. Soil analyses revealed stable depth-dependent patterns for phosphorus and zinc, while leaf ion concentrations showed high heritability and associations with root and agronomic traits. Integrating GWAS with gene expression data identified candidate ion transport/homeostasis genes for breeding nutrient-efficient, climate-resilient millet.