The study investigated how Arabidopsis thaliana SR protein kinases (AtSRPKs) regulate alternative RNA splicing by using chemical inhibitors of SRPK activity. Inhibition with SPHINX31 and SRPIN340 caused reduced root growth and loss of root hairs, accompanied by widespread changes in splicing and phosphorylation of genes linked to root development and other cellular processes. Multi‑omics analysis (transcriptomics and phosphoproteomics) revealed that AtSRPKs modulate diverse splicing factors and affect the splicing landscape of numerous pathways.
The study used TurboID-based proximity labeling coupled with mass spectrometry to map the Arabidopsis alternative splicing machinery centered on ACINUS, PININ, and SR45, identifying 298 high-confidence components and revealing that splicing is tightly linked to transcription and other RNA processing steps. Bioinformatic and genetic analyses, including O-glycosylation double mutants, demonstrated both conserved and plant‑specific regulatory networks and highlighted the role of sugar modifications in modulating splicing.
The study examined how genetic variation among 181 wheat (Triticum aestivum) lines influences root endophytic fungal communities using ITS2 metabarcoding. Heritability estimates and GWAS identified 11 QTLs linked to fungal clade composition, highlighting genetic control of mycobiota, especially for biotrophic AMF. These findings suggest breeding can be used to modulate beneficial root-fungal associations.
The study demonstrates that abscisic acid (ABA) accumulates in darkness to suppress cotyledon opening during seedling deetiolation, and that light exposure lifts this repression, enabling cotyledon aperture. Genome‑wide transcriptional and alternative‑splicing changes accompany this process, and the light‑dependent regulation requires the splicing factors RS40 and RS41, whose activity is repressed in the dark.