The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.
The study investigates the evolutionary shift from archegonial to embryo‑sac reproduction by analyzing transcriptomes of Ginkgo reproductive organs and related species. It reveals that the angiosperm pollen‑tube guidance module MYB98‑CRP‑ECS is active in mature Ginkgo archegonia and that, while egg cell transcription is conserved, changes in the fate of other female gametophyte cells drove the transition, providing a molecular framework for this major reproductive evolution.
The study profiled small interfering RNAs (siRNAs) in barley (Hordeum vulgare) seeds differing in viability after controlled long‑term storage, identifying 85,728 differentially expressed siRNAs associated with seed vigor. Trans‑acting siRNAs displayed distinct temporal patterns during imbibition, and functional analyses linked siRNA targets to key processes such as cytochrome activity, root development, and carbohydrate metabolism, suggesting a role in maintaining metabolic activity during germination.
Gain and loss of gene function shaped the nickel hyperaccumulation trait in Noccaea caerulescens
Authors: Belloeil, C., Garcia de la Torre, V. S., Contreras Aguilera, R., Kupper, H., Lopez-Roques, C., Iampetro, C., Vandecasteele, C., Klopp, C., Launay-Avon, A., Leemhuis, W., Yamjabok, J., van den Heuvel, J., Aarts, M. G. M., Quintela Sabaris, C., Thomine, S., MERLOT, S.
The study presents a high-quality genome assembly for the nickel hyperaccumulator Noccaea caerulescens and uses it as a reference for comparative transcriptomic analyses across different N. caerulescens accessions and the non‑accumulating relative Microthlaspi perfoliatum. It identifies a limited set of metal transporters (NcHMA3, NcHMA4, NcIREG2, and NcIRT1) whose elevated expression correlates with hyperaccumulation, and demonstrates that frameshift mutations in NcIRT1 can abolish the trait, indicating an ancient, transporter‑driven origin of nickel hyperaccumulation.
Post-Domestication selection of MKK3 Shaped Seed Dormancy and End-Use Traits in Barley
Authors: Jorgensen, M. E., Vequaud, D., Wang, Y., Andersen, C. B., Bayer, M., Box, A., Braune, K., Cai, Y., Chen, F., Antonio Cuesta-Seijo, J., Dong, H., Fincher, G. B., Gojkovic, Z., Huang, Z., Jaegle, B., Kale, S. M., Krsticevic, F., Roux, P.-M. L., Lozier, A., Lu, Q., Mascher, M., Murozuka, E., Nakamura, S., Simmelsgaard, M. U., Pedas, P. R., Pin, P., Sato, K., Spannagl, M., Rasmussen, M. W., Russell, J., Schreiber, M., Thomsen, H. C., Tulloch, S., Thomsen, N. W., Voss, C., Skadhauge, B., Stein, N., Waugh, R., Willerslev, E., Dockter, C.
The study demonstrates that in barley (Hordeum vulgare) the MAPK pathway, specifically the MKK3 kinase, controls grain dormancy through a combination of haplotype variation, copy-number changes, and intrinsic kinase activity. Historical selection of particular MKK3 haplotypes correlates with climatic pressures, offering a genetic basis to balance short dormancy with resistance to pre‑harvest sprouting under climate change.
Mycotoxin-driven proteome remodeling reveals limited activation of Triticum aestivum responses to emerging chemotypes integrated with fungal modulation of ergosterols
Authors: Ramezanpour, S., Alijanimamaghani, N., McAlister, J. A., Hooker, D., Geddes-McAlister, J.
The study used comparative proteomics to examine how the emerging 15ADON/3ANX chemotype of Fusarium graminearum affects protein expression in both wheat and the fungus. It identified a core wheat proteome altered by infection, chemotype‑specific wheat proteins, and fungal proteins linked to virulence and ergosterol biosynthesis, revealing distinct molecular responses influencing disease severity.
MdBRC1 and MdFT2 Interaction Fine-Tunes Bud Break Regulation in Apple
Authors: Gioppato, H. A., Estevan, J., Al Bolbol, M., Soriano, A., Garighan, J., Jeong, K., Georget, C., Soto, D. G., El Khoury, S., Falavigna, V. d. S., George, S., Perales, M., Andres, F.
The study identifies the transcription factor MdBRC1 as a key inhibitor of bud growth during the ecodormancy phase in apple (Malus domestica), directly regulating dormancy‑associated genes and interacting with the flowering promoter MdFT2 to modulate bud break. Comparative transcriptomic analysis and gain‑of‑function experiments in poplar demonstrate that MdFT2 physically binds MdBRC1, attenuating its repressive activity and acting as a molecular switch for the transition to active growth.
The study examined three fruit morphotypes of the desert shrub Haloxylon ammodendron, revealing distinct germination performances under salt and drought stress. Proteomic analysis identified 721 differentially expressed proteins, particularly between the YP and PP morphotypes, linking stress‑responsive protein abundance to rapid germination in YP and delayed germination in PP as contrasting adaptive strategies. The findings suggest that fruit polymorphism facilitates niche differentiation and informs germplasm selection for desert restoration.
The study tracked molecular changes in plastoglobules and thylakoids of Zea mays B73 during heat stress and recovery, revealing increased plastoglobule size, number, and adjacent lipid droplets over time. Proteomic and lipidomic analyses uncovered up‑regulation of specific plastoglobule proteins and alterations in triacylglycerol, plastoquinone derivatives, and phytol esters, suggesting roles in membrane remodeling and oxidative defense. These insights highlight plastoglobule‑associated pathways as potential targets for enhancing heat resilience in maize.
The study introduced full-length SOC1 genes from maize and soybean, and a partial SOC1 gene from blueberry, into tomato plants under constitutive promoters. While VcSOC1K and ZmSOC1 accelerated flowering, all three transgenes increased fruit number per plant mainly by promoting branching, and transcriptomic profiling revealed alterations in flowering, growth, and stress‑response pathways.