The study performed transcriptome profiling of Cryptomeria japonica individuals from different geographic origins grown in three common gardens across Japan, assembling 77,212 transcripts guided by the species' genome. Using SNP-based genetic clustering and weighted gene co‑expression network analysis, they identified gene modules whose expression correlated with genetic differentiation, revealing that defense‑related genes are up‑regulated in Pacific‑side populations while terpenoid metabolism genes are higher in Sea‑of‑Japan populations, indicating local adaptation via regulatory changes.
The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.
Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits
Authors: Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Kosh Komba, E., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Vigouroux, Y., Grondin, A., Laplaze, L.
The study performed ionomic profiling and genome-wide association studies on a diverse panel of pearl millet infield across two seasons to uncover genetic factors controlling nutrient acquisition. Soil analyses revealed stable depth-dependent patterns for phosphorus and zinc, while leaf ion concentrations showed high heritability and associations with root and agronomic traits. Integrating GWAS with gene expression data identified candidate ion transport/homeostasis genes for breeding nutrient-efficient, climate-resilient millet.
Transcriptome responses of two Halophila stipulacea seagrass populations from pristine and impacted habitats, to single and combined thermal and excess nutrient stressors, reveal local adaptive features and core stress-response genes
Authors: Nguyen, H. M., Yaakov, B., Beca-Carretero, P., Procaccini, G., Wang, G., Dassanayake, M., Winters, G., Barak, S.
The study examined transcriptomic responses of the tropical seagrass Halophila stipulacea from a pristine and an impacted site under single and combined thermal and excess nutrient stress in mesocosms. Combined stress caused greater gene reprogramming than individual stresses, with thermal effects dominating and the impacted population showing reduced plasticity but higher resilience. Core stress‑response genes were identified as potential early field indicators of environmental stress.