The study investigated how molecular factors determine the developmental fate of axillary buds (AXB) in Fragaria vesca, distinguishing between stolon formation and branch crown development. By combining phenotypic analysis of AXB development with RNA‑seq of undifferentiated buds across three genotypes, the authors identified FveBRC1 as a key regulator, and confirmed its role using CRISPR/Cas9‑generated brc1 mutants. These findings enhance understanding of AXB fate control and its impact on strawberry fruit yield.
The study applied a CRISPR/Cas9 multiplex guide RNA strategy to delete entire open reading frames of four reproductive genes in Arabidopsis thaliana, achieving homozygous deletions already in the T1 generation with rates of 8.3–30%. Deletion efficiencies correlated with DeepSpCas9 prediction scores, and phenotypic analyses revealed unexpected effects of residual gene fragments on fertilization and seed development.
The study performed a comprehensive computational analysis of the Arabidopsis thaliana proteome, classifying 48,359 proteins by melting temperature (Tm) and melting temperature index (TI) and linking thermal stability to amino acid composition, molecular mass, and codon usage. Machine‑learning and evolutionary analyses revealed that higher molecular mass and specific codon pairs correlate with higher Tm, and that gene duplication has driven the evolution of high‑Tm proteins, suggesting a genomic basis for stress resilience.
The study demonstrates the implementation of CRISPR/Cas9-mediated targeted mutagenesis in the orphan crop grain amaranth (Amaranthus hypochondriacus) by editing genes of the betalain biosynthesis pathway using the CasCADE modular cloning system. It addresses the bottleneck of lacking efficient stable transformation and regeneration protocols for non‑model crops, providing a reproducible workflow for climate‑resilient breeding.