Light on its feet: Acclimation to high and low diurnal light is flexible in Chlamydomonas reinhardtii
Authors: Dupuis, S., Chastain, J. L., Han, G., Zhong, V., Gallaher, S. D., Nicora, C. D., Purvine, S. O., Lipton, M. S., Niyogi, K. K., Iwai, M., Merchant, S. S.
The study examined how prior light‑acclimation influences the fitness and rapid photoprotective reprogramming of Chlamydomonas during transitions between low and high diurnal light intensities. While high‑light‑acclimated cells struggled to grow and complete the cell cycle after shifting to low light, low‑light‑acclimated cells quickly remodeled thylakoid ultrastructure, enhanced photoprotective quenching, and altered photosystem protein levels, recovering chloroplast function within a single day. Transcriptomic and proteomic profiling revealed swift induction of stress‑response genes, indicating high flexibility in diurnal light acclimation.
The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.
The study examined how tomato (Solanum lycopersicum) plants respond hormonally to infection by Pseudomonas syringae pv. tomato DC3000 at two different temperatures, revealing temperature‑dependent expression of marker genes for salicylic acid, jasmonic acid, and abscisic acid pathways, while ethylene‑related genes remained unchanged. These results underscore the intricate interplay between host, pathogen, and environmental conditions in shaping plant defence.
The study compared tissue‑specific transcriptomes of the Australian pitcher plant Cephalotus follicularis with existing data from the Asian pitcher plant Nepenthes gracilis to assess molecular convergence underlying their similar leaf morphologies. Both species showed overlapping gene expression in functionally equivalent tissues and shared transcriptional activation of amino‑acid metabolism and protein synthesis after feeding, while exhibiting distinct regulation of digestive enzyme genes and several cases of combined expression and protein‑sequence convergence in glandular tissues.
The study investigated whether expression of Dormancy-Associated MADS-BOX genes DAM3 and DAM4 inversely correlates with vegetative growth during semi-dormancy induction and breaking in cultivated strawberry. DAM3 and DAM4 expression showed negative correlations with leaf area and petiole length, with DAM4 particularly reflecting growth during dormancy breaking, while no cultivar-specific chill requirement or leaf-type differences were detected. These findings support DAM3 and DAM4 as regulators of semi‑dormancy in Fragaria × ananassa.
Kinase fusion proteins (KFPs) act as immune receptors conferring disease resistance in wheat and barley. The study identified an extended β‑finger motif, a Poaceae-specific feature that arose approximately 98 million years ago, present in functionally confirmed KFPs. These receptor genes are among the most highly expressed members of the KFP family, indicating that high transcript levels are linked to their resistance function.
Mycotoxin-driven proteome remodeling reveals limited activation of Triticum aestivum responses to emerging chemotypes integrated with fungal modulation of ergosterols
Authors: Ramezanpour, S., Alijanimamaghani, N., McAlister, J. A., Hooker, D., Geddes-McAlister, J.
The study used comparative proteomics to examine how the emerging 15ADON/3ANX chemotype of Fusarium graminearum affects protein expression in both wheat and the fungus. It identified a core wheat proteome altered by infection, chemotype‑specific wheat proteins, and fungal proteins linked to virulence and ergosterol biosynthesis, revealing distinct molecular responses influencing disease severity.
The study examined three fruit morphotypes of the desert shrub Haloxylon ammodendron, revealing distinct germination performances under salt and drought stress. Proteomic analysis identified 721 differentially expressed proteins, particularly between the YP and PP morphotypes, linking stress‑responsive protein abundance to rapid germination in YP and delayed germination in PP as contrasting adaptive strategies. The findings suggest that fruit polymorphism facilitates niche differentiation and informs germplasm selection for desert restoration.
The study tracked molecular changes in plastoglobules and thylakoids of Zea mays B73 during heat stress and recovery, revealing increased plastoglobule size, number, and adjacent lipid droplets over time. Proteomic and lipidomic analyses uncovered up‑regulation of specific plastoglobule proteins and alterations in triacylglycerol, plastoquinone derivatives, and phytol esters, suggesting roles in membrane remodeling and oxidative defense. These insights highlight plastoglobule‑associated pathways as potential targets for enhancing heat resilience in maize.
The study identifies the serine/threonine protein kinase CIPK14/SNRK3.15 as a regulator of sulfate‑deficiency responses in Arabidopsis thaliana seedlings, with mutants showing diminished early adaptive and later salvage responses under sulfur starvation. While snrk3.15 mutants exhibit no obvious phenotype under sufficient sulfur, the work provides a novel proteomic dataset comparing wild‑type and mutant seedlings under sulfur limitation.