The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.
Mycotoxin-driven proteome remodeling reveals limited activation of Triticum aestivum responses to emerging chemotypes integrated with fungal modulation of ergosterols
Authors: Ramezanpour, S., Alijanimamaghani, N., McAlister, J. A., Hooker, D., Geddes-McAlister, J.
The study used comparative proteomics to examine how the emerging 15ADON/3ANX chemotype of Fusarium graminearum affects protein expression in both wheat and the fungus. It identified a core wheat proteome altered by infection, chemotype‑specific wheat proteins, and fungal proteins linked to virulence and ergosterol biosynthesis, revealing distinct molecular responses influencing disease severity.
The study examined three fruit morphotypes of the desert shrub Haloxylon ammodendron, revealing distinct germination performances under salt and drought stress. Proteomic analysis identified 721 differentially expressed proteins, particularly between the YP and PP morphotypes, linking stress‑responsive protein abundance to rapid germination in YP and delayed germination in PP as contrasting adaptive strategies. The findings suggest that fruit polymorphism facilitates niche differentiation and informs germplasm selection for desert restoration.
The study tracked molecular changes in plastoglobules and thylakoids of Zea mays B73 during heat stress and recovery, revealing increased plastoglobule size, number, and adjacent lipid droplets over time. Proteomic and lipidomic analyses uncovered up‑regulation of specific plastoglobule proteins and alterations in triacylglycerol, plastoquinone derivatives, and phytol esters, suggesting roles in membrane remodeling and oxidative defense. These insights highlight plastoglobule‑associated pathways as potential targets for enhancing heat resilience in maize.
The study used transcriptomic and lipidomic profiling to investigate how chia (Salvia hispanica) leaves respond to short‑term (3 h) and prolonged (27 h) heat stress at 38 °C, revealing rapid activation of calcium‑signaling and heat‑shock pathways and reversible changes in triacylglycerol levels. Nearly all heat‑responsive genes returned to baseline expression after 24 h recovery, highlighting robust thermotolerance mechanisms that could inform improvement of other oilseed crops.
The study characterizes the protein and lipid composition of chloroplast plastoglobules in the B73 maize line during a water-deficit and recovery time course, identifying key polar and neutral lipids and abundant fibrillin proteins. Quantitative proteomics revealed a strong association between Fibrillin 4 and plastoquinone‑9, suggesting a role in redox and prenyl‑lipid metabolism, thereby establishing a foundation for leveraging plastoglobules to enhance crop drought resilience.
The study identifies the serine/threonine protein kinase CIPK14/SNRK3.15 as a regulator of sulfate‑deficiency responses in Arabidopsis thaliana seedlings, with mutants showing diminished early adaptive and later salvage responses under sulfur starvation. While snrk3.15 mutants exhibit no obvious phenotype under sufficient sulfur, the work provides a novel proteomic dataset comparing wild‑type and mutant seedlings under sulfur limitation.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study examined how white lupin (Lupinus albus) cotyledons mobilize nitrogen and minerals during early seedling growth under nitrogen‑deficient conditions, revealing that 60 % of stored proteins degrade within eight days and are redirected to support development. Proteomic analyses showed dynamic shifts in nutrient transport, amino acid metabolism, and stress responses, and premature cotyledon removal markedly impaired growth, highlighting the cotyledon's essential role in nutrient supply and transient photosynthetic activity.
The study characterizes the protein composition of extracellular vesicles (EVs) secreted by the oomycete Phytophthora infestans, revealing enrichment of transmembrane proteins and RxLR effectors, while EV-independent secretions are dominated by cell wall–modifying enzymes. Two MARVEL‑domain proteins, PiMDP1 and PiMDP2, are identified as EV-associated markers that co‑localize with RxLR effectors, with PiMDP2 specifically accumulating at the haustorial interface during early infection, suggesting a role in effector delivery.