The study tests whether the circadian clock component ELF3 shapes developmental trait heterogeneity, proposing that faster‑developing populations are more heterogeneous early but less so at maturity, whereas slower growers show the opposite pattern. Experiments with Arabidopsis elf3 and barley Hvelf3 mutants confirmed these predictions, showing ELF3 influences hypocotyl and bolting variability via maturation rate, and that smaller barley plants exhibit increased osmotic stress resilience, suggesting ELF3‑driven heterogeneity serves as a bet‑hedging strategy.
The study generated a high-quality genome assembly for Victoria cruziana and used comparative transcriptomics to identify anthocyanin biosynthesis genes and their transcriptional regulators that are differentially expressed between white and light pinkish flower stages. Differential expression of structural genes (VcrF3H, VcrF35H, VcrDFR, VcrANS, VcrarGST) and transcription factors (VcrMYB123, VcrMYB-SG6_a, VcrMYB-SG6_b, VcrTT8, VcrTTG1) correlates with the observed flower color change.
The study demonstrates that RNA extracted from herbarium specimens can be used to generate high‑quality transcriptomes, comparable to those from fresh or silica‑dried samples. By assembling and comparing transcriptomes across specimen types, the authors validated a plant immune receptor synthesized from a 1956 collection, proving archival RNA’s utility for functional genomics. These findings challenge the prevailing view that herbarium RNA is unsuitable for transcriptomic analyses.
The study profiled the Arabidopsis apoplastic proteome during pattern‑triggered immunity induced by the flg22 peptide, using apoplastic washing fluid with minimal cytoplasmic contamination followed by LC‑MS/MS. Results showed consistent PTI‑specific enrichment and depletion of peptides, a bias toward ectodomain peptides of receptor‑like kinases, and increased abundance of the exosome marker tetraspanin 8, indicating heightened exosome levels during PTI.