Regenerative agriculture effects on biomass, drought resilience and 14C-photosynthate allocation in wheat drilled into ley compared to disc or ploughed arable soil
Authors: Austen, N., Short, E., Tille, S., Johnson, I., Summers, R., Cameron, D. D., Leake, J. R.
Regenerative agriculture using a grass-clover ley increased wheat yields and macroaggregate stability despite reduced root biomass, but did not enhance soil carbon sequestration as measured by 14C retention. Drought further decreased photosynthate allocation to roots, especially in ley soils, while genotype effects on yield were minimal.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
The study compared aphid resistance and Barley Yellow Dwarf Virus (BYDV) transmission among three wheat varieties (G1, RGT Wolverine, RGT Illustrious). G1 emits the repellent 2‑tridecanone, restricts aphid phloem access, and shows reduced BYDV transmission, whereas RGT Wolverine limits systemic viral infection despite high transmission efficiency. The authors suggest breeding the two resistance mechanisms together for improved protection.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
The study investigated whether wheat homoeologous genes actively compensate for each other when one copy acquires a premature termination codon (PTC) mutation. By analyzing mutagenised wheat lines, the authors found that only about 3% of cases exhibited upregulation of the unaffected homoeolog, indicating that widespread active transcriptional compensation is absent in wheat.
Overexpression of the wheat bHLH transcription factor TaPGS1 leads to increased flavonol accumulation in the seed coat, which disrupts polar auxin transport and causes localized auxin accumulation, delaying endosperm cellularization and increasing cell number, thereby enlarging grain size. Integrated metabolomic and transcriptomic analyses identified upregulated flavonol biosynthetic genes, revealing a regulatory module that links flavonol-mediated auxin distribution to seed development in wheat.
The study evaluated how alginate oligosaccharide (AOS) chain length influences the levels of seven key phytohormones in wheat seedlings challenged with Botrytis cinerea. Hormone profiling revealed that mid‑range oligomers (DP 4‑6) most strongly up‑regulate defense‑related hormones (JA, SA, ABA, CTK), whereas longer oligomers (DP 7) most effectively suppress ethylene. These findings suggest that tailoring AOS polymerization can optimize disease resistance and growth in cereal crops.
The study evaluated natural genetic variation in non-photochemical quenching and photoprotection across 861 sorghum accessions grown in the field over two years, revealing moderate to high broad-sense heritability for chlorophyll fluorescence traits. By integrating genome-wide association studies (GWAS) with transcriptome-wide association studies (TWAS) and covariance analyses, the authors identified 110 high-confidence candidate genes underlying photoprotection, highlighting a complex, polygenic architecture for these traits.
The study used comparative transcriptomics across Erysimum species to identify two 2‑oxoglutarate‑dependent dioxygenases, CARD5 and CARD6, responsible for the 14β‑ and 21‑hydroxylation steps in cardenolide biosynthesis in Erysimum cheiranthoides. Knockout mutants lacking these genes accumulated pathway intermediates, and transient expression in Nicotiana benthamiana confirmed their enzymatic functions, while structural modeling pinpointed residues linked to neofunctionalization.
Comparative transcriptomics uncovers plant and fungal genetic determinants of mycorrhizal compatibility
Authors: Marques-Galvez, J. E., de Freitas Pereira, M., Nehls, U., Ruytinx, J., Barry, K., Peter, M., Martin, F., Grigoriev, I. V., Veneault-Fourrey, C., Kohler, A.
The study used comparative and de‑novo transcriptomic analyses in poplar to uncover plant and fungal gene regulons that govern ectomycorrhizal (ECM) compatibility, distinguishing general fungal‑sensing responses from ECM‑specific pathways. Key findings include modulation of jasmonic acid‑related defenses, coordinated regulation of secretory and cell‑wall remodeling genes, and dynamic expression of the Common Symbiosis Pathway during early and mature symbiosis stages.