The study generated a chromosome‑scale genome of the grass Achnatherum inebrians and identified dynamic expression patterns of conserved cell pluripotency regulators (CPRs) as precise predictors of the optimal callus regeneration window, enabling a 49.4% transformation efficiency in this species. The CPR‑based approach was successfully transferred to wheat and sainfoin, markedly increasing their shoot regeneration rates, thereby providing a rational design framework to overcome genotype‑dependent regeneration bottlenecks in plant biotechnology.
The study investigates the gene regulatory network (GRN) controlling flowering time in the allotetraploid crop Brassica napus by comparing its transcriptome to that of Arabidopsis thaliana. While most orthologous gene pairs show conserved expression dynamics, several flowering‑time genes display regulatory divergence, especially under cold conditions, indicating subfunctionalisation among paralogues. Despite these differences, the overall GRN topology remains similar to Arabidopsis, likely due to retention of multiple paralogues.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study used comparative transcriptomics of dorsal and ventral petals across development, alongside expression profiling in floral symmetry mutants, to identify genes linked to dorsal (AmCYC-dependent) and ventral (AmDIV-dependent) identities in Antirrhinum majus. In situ hybridisation validated axis‑specific and boundary‑localized expression patterns, revealing that a conserved NGATHA‑LIKE1‑BRASSINAZOLE‑RESISTANT1‑miR164 module has been co‑opted to regulate AmDIV targets and shape the corolla. These findings delineate regulatory modules coordinating dorsoventral and proximal‑distal patterning in zygomorphic flowers.
The study sequenced genomes of ericoid mycorrhiza‑forming liverworts and experimentally reconstituted the symbiosis, revealing a nutrient‑regulated state that supports intracellular colonization. Comparative transcriptomics identified an ancestral gene module governing intracellular symbiosis, and functional validation in Marchantia paleacea through genetic manipulation, phylogenetics, and transactivation assays confirmed its essential role. The findings suggest plants have retained and independently recruited this ancestral module for diverse intracellular symbioses.
High-quality PacBio HiFi draft genome assemblies were generated for three Bouteloua species (B. curtipendula, B. gracilis, B. eriopoda) with >98.5% BUSCO completeness. Gene prediction with Helixer produced inflated gene counts likely reflecting polyploidy and fragmented predictions, and panEDTA identified 25–40% transposable-element content dominated by LTR retrotransposons. These assemblies provide foundational references for comparative genomics within PACMAD grasses.
Chromosome-level genome assembly of the gerbera (Gerbera hybrida) using HiFi long-read and Hi-C technologies
Authors: Aoyagi, Y. B., Shimada, R., Hirakawa, H., Toyoda, A., Toh, H., Isobe, S., Tajima, N., Shirasawa, K., Horiike, T., Fujii, H., Fujiwara, T., Bamba, M., Nakatsuka, T., Tominaga, A.
The study presents high-quality nuclear and organellar genome assemblies for Gerbera hybrida, generated using PacBio HiFi and Omni-C chromatin capture sequencing, resulting in a 2.32 Gb nuclear genome assembled into 25 scaffolds matching its chromosome number. Annotation identified 36,160 protein‑coding genes and detailed mitochondrial and chloroplast genomes, establishing a valuable genomic resource for molecular breeding and research in Gerbera and the Asteraceae family.
Gain and loss of gene function shaped the nickel hyperaccumulation trait in Noccaea caerulescens
Authors: Belloeil, C., Garcia de la Torre, V. S., Contreras Aguilera, R., Kupper, H., Lopez-Roques, C., Iampetro, C., Vandecasteele, C., Klopp, C., Launay-Avon, A., Leemhuis, W., Yamjabok, J., van den Heuvel, J., Aarts, M. G. M., Quintela Sabaris, C., Thomine, S., MERLOT, S.
The study presents a high-quality genome assembly for the nickel hyperaccumulator Noccaea caerulescens and uses it as a reference for comparative transcriptomic analyses across different N. caerulescens accessions and the non‑accumulating relative Microthlaspi perfoliatum. It identifies a limited set of metal transporters (NcHMA3, NcHMA4, NcIREG2, and NcIRT1) whose elevated expression correlates with hyperaccumulation, and demonstrates that frameshift mutations in NcIRT1 can abolish the trait, indicating an ancient, transporter‑driven origin of nickel hyperaccumulation.
Whole-genome sequencing reveals the molecular basis of sex determination in the dioecious wild yam Dioscorea tokoro
Authors: Kudoh, A., Natsume, S., Sugihara, Y., Kato, H., Abe, A., Oikawa, K., Shimizu, M., Itoh, K., Tsujimura, M., Takano, Y., Sakai, T., Adachi, H., Ohta, A., Ohtsu, M., Ishizaki, T., Terachi, T., Terauchi, R.
The study reveals that the dioecious monocot Dioscorea tokoro employs a male heterogametic (XY) sex-determination system with sex-determining regions on chromosome 3, including X- and Y-specific pericentromeric regions. Two Y-specific candidate genes, BLH9 (a homeobox protein) and HSP90 (a molecular chaperone), are identified as likely mediators of female organ suppression and pollen development, respectively, providing insight into the evolution of dioecy in plants.