The study generated a high-quality genome assembly for Victoria cruziana and used comparative transcriptomics to identify anthocyanin biosynthesis genes and their transcriptional regulators that are differentially expressed between white and light pinkish flower stages. Differential expression of structural genes (VcrF3H, VcrF35H, VcrDFR, VcrANS, VcrarGST) and transcription factors (VcrMYB123, VcrMYB-SG6_a, VcrMYB-SG6_b, VcrTT8, VcrTTG1) correlates with the observed flower color change.
The study uncovers a feedback mechanism wherein phosphomimic mutation (PetD T4E) or deletion of the N‑terminal five amino acids of the b6f subunit PetD suppresses STT7 kinase activity, leading to a State 1‑locked phenotype and impaired electron transfer, highlighting the essential regulatory role of the PetD N‑terminus in photosynthetic state transitions.
The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.
The study demonstrates that RNA extracted from herbarium specimens can be used to generate high‑quality transcriptomes, comparable to those from fresh or silica‑dried samples. By assembling and comparing transcriptomes across specimen types, the authors validated a plant immune receptor synthesized from a 1956 collection, proving archival RNA’s utility for functional genomics. These findings challenge the prevailing view that herbarium RNA is unsuitable for transcriptomic analyses.