The circadian clock gates lateral root development
Authors: Nomoto, S., Mamerto, A., Ueno, S., Maeda, A. E., Kimura, S., Mase, K., Kato, A., Suzuki, T., Inagaki, S., Sakaoka, S., Nakamichi, N., Michael, T. P., Tsukagoshi, H.
The study identifies the circadian clock component ELF3 as a temporal gatekeeper that limits hormone‑induced pericycle proliferation and lateral root development in Arabidopsis thaliana. Time‑resolved transcriptomics, imaging, and genetic analyses show that ELF3 maintains rhythmic expression of key regulators via LNK1 and MADS‑box genes, and that loss of ELF3 disrupts this rhythm, enhancing callus growth and accelerating root organogenesis.
The study reveals that the microtubule-associated protein MAP70-2 integrates mechanical and biochemical signals to guide division plane orientation during early lateral root primordium formation in Arabidopsis thaliana. Dynamic MAP70-2 localization to cell corners and the cortical division zone precedes cytokinesis, and loss of MAP70-2 results in misoriented divisions and malformed lateral roots, highlighting its role in three‑dimensional differential growth under mechanical constraints.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.
The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.
Novel substrate affinity of FaCCR1 and FaCCR1/FaOCT4 expression control the content of medium-chain esters in strawberry fruit
Authors: Roldan-Guerra, F. J., Amorim-Silva, V., Jimenez, J., Mari-Albert, A., Torreblanca, R., Ruiz del Rio, J., Botella, M. A., Granell, A., Sanchez-Sevilla, J. F., Castillejo, C., Amaya, I.
The study identified a major QTL on chromosome 6A that accounts for 40% of variation in medium-chain ester (MCE) levels in strawberry fruit, pinpointing FaCCR1 and FaOCT4 as the causal genes. Functional validation through subcellular localization, transient overexpression, enzymatic assays, and molecular docking demonstrated that FaCCR1 also catalyzes MCE precursor reactions, and a KASP marker in FaOCT4 was developed for breeding fragrant cultivars.
The study genotyped 1,013 hard red spring wheat lines using SNP arrays and targeted KASP markers to track changes in genetic diversity and the distribution of dwarfing Rht alleles over a century of North American breeding. It found shifts from Rht‑D1b to Rht‑B1b dominance, identified low‑frequency dwarf alleles at Rht24 and Rht25 that have increased recently, and revealed gene interactions that can fine‑tune plant height, along with evidence of recent selection for photoperiod sensitivity.
The study shows that the membrane lipids PI4P, PI(4,5)P2, and phosphatidylserine have distinct spatial and temporal dynamics during lateral root primordium formation in Arabidopsis thaliana, with PI4P acting as a stable basal lipid, PI(4,5)P2 serving as a negative regulator of initiation, and phosphatidylserine increasing after founder cell activation. Using live-cell biosensors, genetic mutants, and an inducible PI(4,5)P2 depletion system, the authors demonstrate that reducing PI(4,5)P2 enhances lateral root initiation and development.
The study engineers Type‑B response regulators to alter their transcriptional activity and cytokinin sensitivity, enabling precise modulation of cytokinin‑dependent traits. Using tissue‑specific promoters, the synthetic transcription factors were deployed in Arabidopsis thaliana to reliably increase or decrease lateral root numbers, demonstrating a modular platform for controlling developmental phenotypes.
The study characterizes the tomato class B heat shock factor SlHSFB3a, revealing its age‑dependent expression in roots and its role in enhancing lateral root density by modulating auxin homeostasis. Overexpression of SlHSFB3a increases lateral root emergence, while CRISPR‑mediated knockouts produce the opposite phenotype, indicating that SlHSFB3a regulates auxin signaling through repression of auxin repressors and activation of the ARF7/LOB20 pathway.
A biparental Vicia faba mapping population was screened under glasshouse conditions for resistance to a mixture of Fusarium avenaceum and Fusarium oxysporum, revealing several families with moderate to high resistance. Using the Vfaba_v2 Axiom SNP array, a high-density linkage map of 6,755 SNPs was constructed, enabling the identification of a major QTL on linkage group 4 associated with partial resistance to foot and root rot.