The study performed transcriptome profiling of Cryptomeria japonica individuals from different geographic origins grown in three common gardens across Japan, assembling 77,212 transcripts guided by the species' genome. Using SNP-based genetic clustering and weighted gene co‑expression network analysis, they identified gene modules whose expression correlated with genetic differentiation, revealing that defense‑related genes are up‑regulated in Pacific‑side populations while terpenoid metabolism genes are higher in Sea‑of‑Japan populations, indicating local adaptation via regulatory changes.
The study constructs a ~1‑million‑cell single‑nuclei transcriptome atlas of Arabidopsis leaves to reveal that drought stress accelerates transcriptional programs associated with maturation and aging, thereby limiting leaf growth in proportion to stress intensity. Targeted upregulation of FERRIC REDUCTION OXIDASE 6 in mesophyll cells partially rescues leaf growth under drought, demonstrating the functional relevance of these transcriptional changes.
The study investigated unexpected leaf spot symptoms in Psa3‑resistant kiwifruit (Actinidia) germplasm, finding that Psa3 was detectable by qPCR and metabarcoding despite poor culturing. Metabarcoding revealed distinct bacterial community shifts in lesions versus healthy tissue, and whole‑genome sequencing identified diverse Pseudomonas spp. that, while not individually more pathogenic, could enhance Psa3 growth, suggesting pathogenic consortia on resistant hosts.